• Journal of Innovative Optical Health Sciences
  • Vol. 10, Issue 4, 1740002 (2017)
Lingyi Zhao1, Meng Yang2, Yuxin Jiang2, and Changhui Li1、*
Author Affiliations
  • 1Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
  • 2Department of Ultrasonography, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
  • show less
    DOI: 10.1142/s1793545817400028 Cite this Article
    Lingyi Zhao, Meng Yang, Yuxin Jiang, Changhui Li. Optical fluence compensation for handheld photoacoustic probe: An in vivo human study case[J]. Journal of Innovative Optical Health Sciences, 2017, 10(4): 1740002 Copy Citation Text show less
    References

    [1] R. Siegel, D. Naishadham, A. Jemal, “Cancer statistics, 2013,” Ca Cancer J Clin. 63, 10–29 (2013).

    [2] H. D. Cheng, X. Cai, X. Chen, L. Hu, X. Lou, “Computer-aided detection and classification of microcalcifications in mammograms: A survey,” Pattern Recognit. 36, 2967–2991 (2003).

    [3] W. A. Berg, J. D. Blume, J. B. Cormack, E. B. Mendelson, D. Lehrer, M. Bohm-Velez, E. D. Pisano, R. A. Jong, W. P. Evans, M. J. Morton, “Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer,” Jama 299, 2151–2163 (2008).

    [4] W. Teh, A. R. Wilson, “The role of ultrasound in breast cancer screening. A consensus statement by the European Group for Breast Cancer Screening,” Eur. J. Cancer 34, 449–450 (1998).

    [5] C. Li, L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59–R97 (2009).

    [6] L. V. Wang, S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).

    [7] M. P. Fronheiser, S. A. Ermilov, H.-P. Brecht, A. Conjusteau, R. Su, K. Mehta, A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15, 021305–021307 (2010).

    [8] C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, L. V. Wang, “Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system,” Biomed. Opt. Express 1, 278–284 (2010).

    [9] A. Taruttis, A. C. Timmermans, P. C. Wouters, M. Kacprowicz, G. M. V. Dam, V. Ntziachristos, “Optoacoustic imaging of human vasculature: Feasibility by using a handheld probe,” Radiology 281, 256–263 (2016).

    [10] D. Yang, D. Xing, Y. Tan, H. Gu, S. Yang, “Integrative prototype B-scan photoacoustic tomography system based on a novel hybridized scanning head,” Appl. Phys. Lett. 88, 817 (2006).

    [11] A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, L. V. Wang, “Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer,” Sci. Rep. 5, 15748 (2015).

    [12] J. Kim, M. H. Kim, K. Jo, J. Ha, Y. Kim, D. J. Lim, C. Kim, “Photoacoustic analysis of thyroid cancer in vivo: A pilot study,” Proc. SPIE (2017), 1006408. Google Scholar

    [13] Z. Yuan, H. B. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88, 231101–231103 (2006).

    [14] L. V. Wang, H. I. Wu, Biomedical Optics: Principles and Imaging (John Wiley & Sons, 2012). Google Scholar

    [15] S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41 (1999).

    [16] K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).

    [17] G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200- μμ m wavelength region,” Appl. Opt. 12, 555–563 (1973).

    [18] J. L. Sandell, T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4, 773–787 (2011).

    [19] V. Peters, D. Wyman, M. Patterson, G. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317 (1990).

    [20] S. Bu, Z. Liu, T. Shiina, K. Kondo, M. Yamakawa, K. Fukutani, Y. Someda, Y. Asao, “Model-based reconstruction integrated with fluence compensation for photoacoustic tomography,” IEEE Trans. Biomed. Eng. 59, 1354–1363 (2012).

    Lingyi Zhao, Meng Yang, Yuxin Jiang, Changhui Li. Optical fluence compensation for handheld photoacoustic probe: An in vivo human study case[J]. Journal of Innovative Optical Health Sciences, 2017, 10(4): 1740002
    Download Citation