• Acta Optica Sinica
  • Vol. 44, Issue 17, 1732012 (2024)
Ruiqi Wang1,2, Chu Li1,2, and Yan Li1,2,3,*
Author Affiliations
  • 1State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
  • 2Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
  • 3Hefei National Laboratory, Hefei 230088, Anhui , China
  • show less
    DOI: 10.3788/AOS241040 Cite this Article Set citation alerts
    Ruiqi Wang, Chu Li, Yan Li. Three‐Dimensional Waveguide Topological Photonic Structures in Glass Fabricated by Femtosecond Laser Direct Writing (Invited)[J]. Acta Optica Sinica, 2024, 44(17): 1732012 Copy Citation Text show less
    References

    [1] Thouless D J, Kohmoto M, Nightingale M P et al. Quantized hall conductance in a two-dimensional periodic potential[J]. Physical Review Letters, 49, 405-408(1982).

    [2] Wang Z, Chong Y D, Joannopoulos J D et al. Observation of unidirectional backscattering-immune topological electromagnetic states[J]. Nature, 461, 772-775(2009).

    [3] Khanikaev A B, Hossein Mousavi S, Tse W K et al. Photonic topological insulators[J]. Nature Materials, 12, 233-239(2013).

    [4] Serra-Garcia M, Peri V, Süsstrunk R et al. Observation of a phononic quadrupole topological insulator[J]. Nature, 555, 342-345(2018).

    [5] Noh J, Benalcazar W A, Huang S et al. Topological protection of photonic mid-gap defect modes[J]. Nature Photonics, 12, 408-415(2018).

    [6] Xie B Y, Wang H F, Wang H X et al. Second-order photonic topological insulator with corner states[J]. Physical Review B, 98, 205147(2018).

    [7] El Hassan A, Kunst F K, Moritz A et al. Corner states of light in photonic waveguides[J]. Nature Photonics, 13, 697-700(2019).

    [8] Kim M, Rho J. Topological edge and corner states in a two-dimensional photonic Su-Schrieffer-Heeger lattice[J]. Nanophotonics, 9, 3227-3234(2020).

    [9] Cerjan A, Jürgensen M, Benalcazar W A et al. Observation of a higher-order topological bound state in the continuum[J]. Physical Review Letters, 125, 213901(2020).

    [10] Wang Y, Xie B Y, Lu Y H et al. Quantum superposition demonstrated higher-order topological bound states in the continuum[J]. Light: Science & Applications, 10, 173(2021).

    [11] Li C, Li M, Yan L Y et al. Higher-order topological biphoton corner states in two-dimensional photonic lattices[J]. Physical Review Research, 4, 023049(2022).

    [12] Maczewsky L J, Zeuner J M, Nolte S et al. Observation of photonic anomalous Floquet topological insulators[J]. Nature Communications, 8, 13756(2017).

    [13] Mukherjee S, Spracklen A, Valiente M et al. Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice[J]. Nature Communications, 8, 13918(2017).

    [14] Stützer S, Plotnik Y, Lumer Y et al. Photonic topological Anderson insulators[J]. Nature, 560, 461-465(2018).

    [15] Yang Z J, Lustig E, Lumer Y et al. Photonic Floquet topological insulators in a fractal lattice[J]. Light: Science & Applications, 9, 128(2020).

    [16] Xu X Y, Wang X W, Chen D Y et al. Quantum transport in fractal networks[J]. Nature Photonics, 15, 703-710(2021).

    [17] Biesenthal T, Maczewsky L J, Yang Z J et al. Fractal photonic topological insulators[J]. Science, 376, 1114-1119(2022).

    [18] Li M, Li C, Yan L Y et al. Fractal photonic anomalous Floquet topological insulators to generate multiple quantum chiral edge states[J]. Light: Science & Applications, 12, 262(2023).

    [19] Zeuner J M, Rechtsman M C, Plotnik Y et al. Observation of a topological transition in the bulk of a non-Hermitian system[J]. Physical Review Letters, 115, 040402(2015).

    [20] Weimann S, Kremer M, Plotnik Y et al. Topologically protected bound states in photonic parity-time-symmetric crystals[J]. Nature Materials, 16, 433-438(2017).

    [21] Jürgensen M, Mukherjee S, Rechtsman M C. Quantized nonlinear Thouless pumping[J]. Nature, 596, 63-67(2021).

    [22] Kirsch M S, Zhang Y Q, Kremer M et al. Nonlinear second-order photonic topological insulators[J]. Nature Physics, 17, 995-1000(2021).

    [23] Maczewsky L J, Heinrich M, Kremer M et al. Nonlinearity-induced photonic topological insulator[J]. Science, 370, 701-704(2020).

    [24] Jürgensen M, Mukherjee S, Jörg C et al. Quantized fractional Thouless pumping of solitons[J]. Nature Physics, 19, 420-426(2023).

    [25] Shu X Q, Li A D, Hu G W et al. Fast encirclement of an exceptional point for highly efficient and compact chiral mode converters[J]. Nature Communications, 13, 2123(2022).

    [26] Zhang X L, Jiang T S, Chan C T. Dynamically encircling an exceptional point in anti-parity-time symmetric systems: asymmetric mode switching for symmetry-broken modes[J]. Light: Science & Applications, 8, 88(2019).

    [27] Dai T X, Ao Y T, Bao J M et al. Topologically protected quantum entanglement emitters[J]. Nature Photonics, 16, 248-257(2022).

    [28] Zhang X L, Yu F, Chen Z G et al. Non-Abelian braiding on photonic chips[J]. Nature Photonics, 16, 390-395(2022).

    [29] Davis K M, Miura K, Sugimoto N et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 21, 1729-1731(1996).

    [30] Chen Y, Gao J, Jiao Z Q et al. Mapping twisted light into and out of a photonic chip[J]. Physical Review Letters, 121, 233602(2018).

    [31] Chen Y, Xia K Y, Shen W G et al. Vector vortex beam emitter embedded in a photonic chip[J]. Physical Review Letters, 124, 153601(2020).

    [32] Crespi A, Ramponi R, Osellame R et al. Integrated photonic quantum gates for polarization qubits[J]. Nature Communications, 2, 566(2011).

    [33] Li M, Li C, Chen Y et al. On-chip path encoded photonic quantum Toffoli gate[J]. Photonics Research, 10, 1533-1542(2022).

    [34] Tang H, di Franco C, Shi Z Y et al. Experimental quantum fast hitting on hexagonal graphs[J]. Nature Photonics, 12, 754-758(2018).

    [35] Tang H, Banchi L, Wang T Y et al. Generating Haar-uniform randomness using stochastic quantum walks on a photonic chip[J]. Physical Review Letters, 128, 050503(2022).

    [36] Spring J B, Metcalf B J, Humphreys P C et al. Boson sampling on a photonic chip[J]. Science, 339, 798-801(2013).

    [37] Tillmann M, Dakić B, Heilmann R et al. Experimental boson sampling[J]. Nature Photonics, 7, 540-544(2013).

    [38] Zhou W H, Gao J, Jiao Z Q et al. Timestamp boson sampling[J]. Applied Physics Reviews, 9, 031408(2022).

    [39] Liu C, Zhou Z Q, Zhu T X et al. Reliable coherent optical memory based on a laser-written waveguide[J]. Optica, 7, 192-197(2020).

    [40] Liu C, Zhu T X, Su M X et al. On-demand quantum storage of photonic qubits in an on-chip waveguide[J]. Physical Review Letters, 125, 260504(2020).

    [41] Zhu T X, Liu C, Jin M et al. On-demand integrated quantum memory for polarization qubits[J]. Physical Review Letters, 128, 180501(2022).

    [42] Liu D C, Li P Y, Zhu T X et al. On-demand storage of photonic qubits at telecom wavelengths[J]. Physical Review Letters, 129, 210501(2022).

    [43] Yan L Y, Li C, Li M et al. Ultrafast coherent energy transport of Fenna-Matthews-Olson complex in a 3D photonic lattice[J]. The Journal of Physical Chemistry C, 127, 21321-21327(2023).

    [44] Liu Q C, Liu W J, Ziegler K et al. Engineering of zeno dynamics in integrated photonics[J]. Physical Review Letters, 130, 103801(2023).

    [45] Crespi A, Pepe F V, Facchi P et al. Experimental investigation of quantum decay at short, intermediate, and long times via integrated photonics[J]. Physical Review Letters, 122, 130401(2019).

    [46] Feng Z, Gao Z W, Wu L N et al. Photonic Newton’s cradle for remote energy transport[J]. Physical Review Applied, 11, 044009(2019).

    [47] Noh J, Huang S, Leykam D et al. Experimental observation of optical Weyl points and Fermi arc-like surface states[J]. Nature Physics, 13, 611-617(2017).

    [48] Maczewsky L J, Höckendorf B, Kremer M et al. Fermionic time-reversal symmetry in a photonic topological insulator[J]. Nature Materials, 19, 855-860(2020).

    [49] Slootman E, Cherifi W, Eek L et al. Breaking and resurgence of symmetry in the non-Hermitian Su-Schrieffer-Heeger model in photonic waveguides[J]. Physical Review Research, 6, 023140(2024).

    [50] Liu W J, Liu Q C, Ni X et al. Floquet parity-time symmetry in integrated photonics[J]. Nature Communications, 15, 946(2024).

    [51] Hirao K, Miura K. Writing waveguides and gratings in silica and related materials by a femtosecond laser[J]. Journal of Non-Crystalline Solids, 239, 91-95(1998).

    [52] Kurobori T, Kawamura K I, Hirano M et al. Simultaneous fabrication of laser-active colour centres and permanent microgratings in lithium fluoride by a single femtosecond pulse[J]. Journal of Physics: Condensed Matter, 15, L399-L405(2003).

    [53] Luo F F, Qian B, Lin G et al. Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser[J]. Optics Express, 18, 6262-6269(2010).

    [54] Burghoff J, Nolte S, Tünnermann A. Origins of waveguiding in femtosecond laser-structured LiNbO3[J]. Applied Physics A, 89, 127-132(2007).

    [55] Gorelik T, Will M, Nolte S et al. Transmission electron microscopy studies of femtosecond laser induced modifications in quartz[J]. Applied Physics A, 76, 309-311(2003).

    [56] Juodkazis S, Nishimura K, Tanaka S et al. Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures[J]. Physical Review Letters, 96, 166101(2006).

    [57] Sudrie L, Franco M, Prade B et al. Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses[J]. Optics Communications, 171, 279-284(1999).

    [58] Shimotsuma Y, Kazansky P G, Qiu J R et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters, 91, 247405(2003).

    [59] Chen F, de Aldana J R V. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining[J]. Laser & Photonics Reviews, 8, 251-275(2014).

    [60] Corrielli G, Seri A, Mazzera M et al. Integrated optical memory based on laser-written waveguides[J]. Physical Review Applied, 5, 054013(2016).

    [61] Zhang Q, Li M, Xu J et al. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering[J]. Photonics Research, 7, 503-507(2019).

    [62] Cheng Y, Sugioka K, Midorikawa K et al. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser[J]. Optics Letters, 28, 55-57(2003).

    [63] Osellame R, Taccheo S, Marangoni M et al. Femtosecond writing of active optical waveguides with astigmatically shaped beams[J]. Journal of the Optical Society of America B, 20, 1559-1567(2003).

    [64] Huang L, Salter P S, Payne F et al. Aberration correction for direct laser written waveguides in a transverse geometry[J]. Optics Express, 24, 10565-10574(2016).

    [65] He F, Xu H, Cheng Y et al. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses[J]. Optics Letters, 35, 1106-1108(2010).

    [66] Eaton S M. Contrasts in thermal dffusion and heat accumulation effects in the fabrication of waveguides in glasses using variable repetition rate femtosecond laser[D](2008).

    [67] Eaton S M, Zhang H B, Ng M L et al. Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides[J]. Optics Express, 16, 9443-9458(2008).

    [68] Arriola A, Gross S, Jovanovic N et al. Low bend loss waveguides enable compact, efficient 3D photonic chips[J]. Optics Express, 21, 2978-2986(2013).

    [69] Haldane F D M, Raghu S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry[J]. Physical Review Letters, 100, 013904(2008).

    [70] Wang Z, Chong Y D, Joannopoulos J D et al. Reflection-free one-way edge modes in a gyromagnetic photonic crystal[J]. Physical Review Letters, 100, 013905(2008).

    [71] Wu X W, Zhang J N, Chen L et al. Research progress of floquet topological photonic insulators (invited)[J]. Acta Photonica Sinica, 52, 0826001(2023).

    [72] Fang K J, Yu Z F, Fan S H. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation[J]. Nature Photonics, 6, 782-787(2012).

    [73] Rechtsman M C, Zeuner J M, Plotnik Y et al. Photonic Floquet topological insulators[J]. Nature, 496, 196-200(2013).

    [74] Rudner M S, Lindner N H, Berg E et al. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems[J]. Physical Review X, 3, 031005(2013).

    [75] Pyrialakos G G, Beck J, Heinrich M et al. Bimorphic Floquet topological insulators[J]. Nature Materials, 21, 634-639(2022).

    [76] Mukherjee S, Thomson R R. Observation of localized flat-band modes in a quasi-one-dimensional photonic rhombic lattice[J]. Optics Letters, 40, 5443-5446(2015).

    [77] Mukherjee S, di Liberto M, Öhberg P et al. Experimental observation of Aharonov-Bohm cages in photonic lattices[J]. Physical Review Letters, 121, 075502(2018).

    [78] Keil R, Poli C, Heinrich M et al. Universal sign control of coupling in tight-binding lattices[J]. Physical Review Letters, 116, 213901(2016).

    [79] Kremer M, Petrides I, Meyer E et al. A square-root topological insulator with non-quantized indices realized with photonic Aharonov-Bohm cages[J]. Nature Communications, 11, 907(2020).

    [80] Su W P, Schrieffer J R, Heeger A J. Solitons in polyacetylene[J]. Physical Review Letters, 42, 1698-1701(1979).

    [81] Wang Y, Lu Y H, Mei F et al. Direct observation of topology from single-photon dynamics[J]. Physical Review Letters, 122, 193903(2019).

    [82] Wang L C, Chen Y, Gong M et al. Edge state, localization length, and critical exponent from survival probability in topological waveguides[J]. Physical Review Letters, 129, 173601(2022).

    [83] Blanco-Redondo A, Bell B, Oren D et al. Topological protection of biphoton states[J]. Science, 362, 568-571(2018).

    [84] Wang M, Doyle C, Bell B et al. Topologically protected entangled photonic states[J]. Nanophotonics, 8, 1327-1335(2019).

    [85] Zhou W H, Wang X W, Gao J et al. Topologically protecting quantum resources with sawtooth lattices[J]. Optics Letters, 46, 1584-1587(2021).

    [86] Ren R J, Lu Y H, Jiang Z K et al. Topologically protecting squeezed light on a photonic chip[J]. Photonics Research, 10, 456-464(2022).

    [87] Tambasco J L, Corrielli G, Chapman R J et al. Quantum interference of topological states of light[J]. Science Advances, 4, eaat3187(2018).

    [88] Wang Y, Pang X L, Lu Y H et al. Topological protection of two-photon quantum correlation on a photonic chip[J]. Optica, 6, 955(2019).

    [89] Wang Y, Lu Y H, Gao J et al. Topologically protected polarization quantum entanglement on a photonic chip[J]. Chip, 1, 100003(2022).

    [90] Ding K, Fang C, Ma G C. Non-Hermitian topology and exceptional-point geometries[J]. Nature Reviews Physics, 4, 745-760(2022).

    [91] Zhang K, Yang Z S, Fang C. Correspondence between winding numbers and skin modes in non-Hermitian systems[J]. Physical Review Letters, 125, 126402(2020).

    [92] Yao S Y, Wang Z. Edge states and topological invariants of non-Hermitian systems[J]. Physical Review Letters, 121, 086803(2018).

    [93] Bandres M A, Wittek S, Harari G et al. Topological insulator laser: experiments[J]. Science, 359, eaar4005(2018).

    [94] Zhao H, Qiao X D, Wu T W et al. Non-Hermitian topological light steering[J]. Science, 365, 1163-1166(2019).

    [95] Shao Z K, Chen H Z, Wang S et al. A high-performance topological bulk laser based on band-inversion-induced reflection[J]. Nature Nanotechnology, 15, 67-72(2020).

    [96] Zeng Y Q, Chattopadhyay U, Zhu B F et al. Electrically pumped topological laser with valley edge modes[J]. Nature, 578, 246-250(2020).

    [97] Contractor R, Noh W, Redjem W et al. Scalable single-mode surface-emitting laser via open-Dirac singularities[J]. Nature, 608, 692-698(2022).

    [98] Wu J Q, Ghosh S, Gan Y S et al. Higher-order topological polariton corner state lasing[J]. Science Advances, 9, eadg4322(2023).

    [99] Song W G, Sun W Z, Chen C et al. Breakup and recovery of topological zero modes in finite non-Hermitian optical lattices[J]. Physical Review Letters, 123, 165701(2019).

    [100] Kang J, Zhang Q L, Wei R S et al. Tunable localization of higher-order bound states in non-Hermitian optical waveguide lattices[J]. Laser & Photonics Reviews, 17, 2300558(2023).

    [101] Cerjan A, Huang S, Wang M H et al. Experimental realization of a Weyl exceptional ring[J]. Nature Photonics, 13, 623-628(2019).

    [102] Fritzsche A, Biesenthal T, Maczewsky L J et al. Parity-time-symmetric photonic topological insulator[J]. Nature Materials, 23, 377-382(2024).

    [103] Hatano N, Nelson D R. Localization transitions in non-Hermitian quantum mechanics[J]. Physical Review Letters, 77, 570-573(1996).

    [104] Lee T E. Anomalous edge state in a non-Hermitian lattice[J]. Physical Review Letters, 116, 133903(2016).

    [105] Li Y H, Liang C, Wang C Y et al. Gain-loss-induced hybrid skin-topological effect[J]. Physical Review Letters, 128, 223903(2022).

    [106] Ke S L, Wen W T, Zhao D et al. Floquet engineering of the non-Hermitian skin effect in photonic waveguide arrays[J]. Physical Review A, 107, 053508(2023).

    [107] Sun Y Y, Hou X R, Wan T et al. Photonic floquet skin-topological effect[J]. Physical Review Letters, 132, 063804(2024).

    [108] Hassan A U, Zhen B, Soljačić M et al. Dynamically encircling exceptional points: exact evolution and polarization state conversion[J]. Physical Review Letters, 118, 093002(2017).

    [109] Yu F, Zhang X L, Tian Z N et al. General rules governing the dynamical encircling of an arbitrary number of exceptional points[J]. Physical Review Letters, 127, 253901(2021).

    [110] Tian Z N, Yu F, Zhang X L et al. On-chip single-photon chirality encircling exceptional points[J]. Chip, 2, 100066(2023).

    [111] Li C, Li M, Wang R Q et al. Dynamically encircling exceptional points for robust eigenstate generation and all-optical logic operations in a three-dimensional photonic chip[J]. Physical Review Research, 6, 013203(2024).

    [112] Tan D Z, Wang Z, Xu B B et al. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices[J]. Advanced Photonics, 3, 024002(2021).

    [113] Li L Q, Kong W J, Chen F. Femtosecond laser-inscribed optical waveguides in dielectric crystals: a concise review and recent advances[J]. Advanced Photonics, 4, 024002(2022).

    [114] Albiero R, di Giano N, Pentangelo C et al. Universal photonic processors fabricated by direct femtosecond-laser writing[J]. Proceedings of SPIE, 12889, 1288911(2024).

    [115] Wu C M, Deng H Q, Huang Y S et al. Freeform direct-write and rewritable photonic integrated circuits in phase-change thin films[J]. Science Advances, 10, eadk1361(2024).

    [116] Ross-Adams A, Fernandez T T, Withford M et al. Low bend loss, high index, composite morphology ultra-fast laser written waveguides for photonic integrated circuits[J]. Light: Advanced Manufacturing, 5, 52-61(2024).

    Ruiqi Wang, Chu Li, Yan Li. Three‐Dimensional Waveguide Topological Photonic Structures in Glass Fabricated by Femtosecond Laser Direct Writing (Invited)[J]. Acta Optica Sinica, 2024, 44(17): 1732012
    Download Citation