• Laser & Optoelectronics Progress
  • Vol. 54, Issue 8, 80403 (2017)
Yan Peiqin1、*, Meng Wendong1, Wang Yurong1, Li Zhaohui1, Tao Yuliang2, Peng Huan2, Pan Haifeng1, and Wu Guang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop54.080403 Cite this Article Set citation alerts
    Yan Peiqin, Meng Wendong, Wang Yurong, Li Zhaohui, Tao Yuliang, Peng Huan, Pan Haifeng, Wu Guang. Si-APD Single-Photon Detector with High Stability Based on Auto-Compensation of Temperature Drift[J]. Laser & Optoelectronics Progress, 2017, 54(8): 80403 Copy Citation Text show less
    References

    [1] Natarajan C M, Tanner M G, Hadfield R H. Superconducting nanowire single-photon detectors: Physics and applications[J]. Superconductor Science and Technology, 2012, 25(6): 063001.

    [2] Li H, Zhang L, You L, et al. Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency[J]. Optics Express, 2015, 23(13): 17301-17308.

    [3] Kardynal B E, Yuan Z L, Shields A J. An avalanche-photodiode-based photon-number-resolving detector[J]. Nature Photonics, 2008, 2(7): 425-428.

    [4] Namekata N, Adachi S, Inoue S. 1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode[J]. Optics Express, 2009, 17(8): 6275-6282.

    [5] Ren M, Wu E, Liang Y, et al. Quantum random-number generator based on a photon-number-resolving detector[J]. Physical Review A, 2011, 83(2): 023820.

    [6] He Weiji, Sima Boyu, Cheng Yaojin, et al. Photon counting imaging based on GM-APD[J]. Optics and Precision Engineering, 2012, 20(8): 1831-1837.

    [7] Huang Jianhua, Wu Guang, Zeng Heping. Study of 1.5 GHz harmonics ultrashort pulse gated InGaAs/InP avalanche photodiode single-photon detection[J]. Acta Optica Sinica, 2014, 34(2): 0204001.

    [8] Feng Baicheng, Li Zhaohui, Shi Yafan, et al. Laser ranging with large dynamic range based on dual-mode detectors[J]. Acta Optica Sinica, 2016, 36(5): 0504001.

    [9] Huo Linzhang, Tan Hesheng, He Ran, et al. Research of blue-violet enhanced silicon photomultiplier[J]. Laser & Optoelectronics Progress, 2015, 52(11): 110401.

    [10] Hadfield R H. Single-photon detectors for optical quantum information applications[J]. Nature Photonics, 2009, 3(12): 696-705.

    [11] Warburton R E, McCarthy A, Wallace A M, et al. Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength[J]. Optics Letters, 2007, 32(15): 2266-2268.

    [12] McCarthy A, Collins R J, Krichel N J, et al. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting[J]. Applied Optics, 2009, 48(32): 6241-6251.

    [13] Ren M, Gu X, Liang Y, et al. Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector[J]. Optics Express, 2011, 19(14): 13497-13502.

    [14] Bao Z, Liang Y, Wang Z, et al. Laser ranging at few-photon level by photon-number-resolving detection[J]. Applied Optics, 2014, 53(18): 3908-3912.

    [15] Liang Y, Huang J, Ren M, et al. 1550-nm time-of-flight ranging system employing laser with multiple repetition rates for reducing the range ambiguity[J]. Optics Express, 2014, 22(4): 4662-4670.

    [16] Kong H J, Kim T H, Jo S E, et al. Smart three-dimensional imaging ladar using two Geiger-mode avalanche photodiodes[J]. Optics Express, 2011, 19(20): 19323-19329.

    [17] Kou Tian, Wang Haiyan, Wang Fang, et al. Model of moving target trajectory detected based on airborne laser radar imaging[J]. Laser & Optoelectronics Progress, 2015, 52(10): 101002.

    [18] Sjqvist L, Henriksson M, Jonsson P, et al. Time-correlated single-photon counting range profiling and reflectance tomographic imaging[J]. Advanced Optical Technologies, 2014, 3(2): 187-197.

    [19] Maccarone A, McCarthy A, Ren X, et al. Underwater depth imaging using time-correlated single-photon counting[J]. Optics Express, 2015, 23(26): 33911-33926.

    [20] Gariepy G, Tonolini F, Henderson R, et al. Detection and tracking of moving objects hidden from view[J]. Nature Photonics, 2016, 10: 23-26.

    [21] Lu Qiang, Zeng Fei, Zhang Yuliang, et al. Influence of sky background radiation on bit error rate of atmospheric laser communication system[J]. Laser & Optoelectronics Progress, 2016, 53(7): 070103.

    [22] Feng Jinyuan, Chen Hongjuan, Li Lixiu, et al. The temperature control system and characteristics of the single-photon detector APD[J]. Optical Technique, 2006, 32(2): 0237.

    [23] Liu Fengjiang, Zhang Xiaoqing, Jia Yudong. Design of closed-loop temperature controlled APD photoelectric detector[J]. Transducer and Microsystem Technologies, 2016, 35(5): 97-99.

    [24] Qi Shaoshuai, Zhang Tianshu, Fu Yibin, et al. Constant temperature control system design of single photon detector SPAD[J]. Chinese Journal of Quantum Electronics, 2016, 33(1): 81-87.

    [25] Guo Yongshuai, Lai Kangsheng. Design of numerical control bias source of avalanche photodiode based on DSP[J]. Industrial Control Computer, 2012, 25(3): 99-100.

    [26] Shi Chaoyi, Zhang Yujun, Yin Gaofang, et al. Design of automatic APD bias voltage compensation circuit based on DS3501[J]. Electronic Design Engineering, 2012, 20(3): 1-3.

    [27] Song Jianhua. Digital control bias circuit of APD with temperature compensation[J]. Optics & Optoelectronic Technology, 2013, 11(2): 12-15.

    CLP Journals

    [1] Gao Xiuyun, Zhang Ye, Cui Yanxia, Liu Yanzhen, Li Guohui, Shi Linlin, Hao Yuying. Research Progress in Organic Photomultiplication Photodetector[J]. Laser & Optoelectronics Progress, 2018, 55(7): 70001

    Yan Peiqin, Meng Wendong, Wang Yurong, Li Zhaohui, Tao Yuliang, Peng Huan, Pan Haifeng, Wu Guang. Si-APD Single-Photon Detector with High Stability Based on Auto-Compensation of Temperature Drift[J]. Laser & Optoelectronics Progress, 2017, 54(8): 80403
    Download Citation