[1] J Tang, J H Liao, H Y Meng, et al. Ultraviolet laser and its application in laser processing. Laser & Optoelectronics Progress, 44, 52-56(2007).
[2] M Guillong, I Horn, D Gunther. A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd: YAG laser for laser ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 18, 1224-1230(2003).
[3] Neev J, Tadir Y, Ho P D, et al. Laser zona dissection using shtpulse ultraviolet lasers[C]Proceedings of SPIEThe International Society f Optical Engineering, 1992, 1650: 6169.
[4] D Angelov, B Beylot, A Spassky. Origin of the heterogeneous distribution of the yield of guanyl radical in UV laser photolyzed DNA. Biophysical Journal, 88, 2766-2778(2005).
[5] S Y Zhao, L Xiao, X Wang, et al. Study on a practical 266 nm ultraviolet laser. Laser & Infrared, 42, 883-886(2012).
[6] S Li, P X Li, M Yang, et al. The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate. Chinese Physics B, 31, 034207(2022).
[7] N Wang, J Zhang, H Yu, et al. Sum-frequency generation of 133 mJ, 270 ps laser pulses at 266 nm in LBO crystals. Optics Express, 30, 5700-5708(2022).
[8] Q Li, T Ruckstuhl, S Seeger. Deep-UV laser-based fluorescence lifetime imaging microscopy of single molecules. The Journal of Physical Chemistry B, 108, 8324-8329(2004).
[9] P Su. Design and tolerance analysis of the zoom system in 365 nm UV lithography illumination system. Infrared and Laser Engineering, 51, 20210524(2022).
[10] Q Ge, L Yu, X J Jia, et al. Extracativy frequency doubled red laser with single frequency. Chinese Journal of Lasers, 36, 1744-1748(2009).
[11] H Li, J X Feng, Z J Wan, et al. Low noise continuous-wave single frequency 780 nm laser high-efficiently generated by extra-cavity-enhanced frequency doubling. Chinese Journal of Lasers, 41, 0502003(2014).
[12] Y Ge, S Guo, Y Han, et al. Realization of 1.5 W 780 nm single-frequency laser by using cavity-enhanced frequency doubling of an EDFA boosted 1560 nm diode laser. Optics Communications, 334, 74-78(2015).
[13] X F Xu, Y H Lu, L Zhang, et al. Technical study of 8.7 W continuous wave single frequency green laser based on extra-cavity frequency doubling. Chinese Journal of Lasers, 43, 1101010(2016).
[14] J Wei, X Cao, P Jin, et al. Diving angle optimization of BRF in a single-frequency continuous-wave wideband tunable titanium: sapphire laser. Optics Express, 29, 6714-6725(2021).
[15] V N Beskrovnyi, A S Chirkin. Squeezed state of light at doubled frequency in an external ring cavity. Quantum Electronics, 25, 1194(1995).
[16] Y Emery, A Fleischhauer, T Walther, et al. Angle-tuned type II external-cavity frequency doubling without temperature stabilization. Applied Optics, 38, 972-975(1999).
[17] J D Bhawalkar, Y Mao, H Po, et al. High-power 390-nm laser source based on efficient frequency doubling of a tapered diode laser in an external resonant cavity. Optics Letters, 24, 823-825(1999).
[18] X G Sun, G W Switzer, J L Carlsten. Blue light generation in an external ring cavity using both cavity and grating feedback. Applied Physics Letters, 76, 955-957(2000).
[19] A Görtler, C Strowitzki. Excimer lasers–The powerful light source in the UV and VUV. Laser Technik Journal, 2, 46-50(2005).
[20] Z H Li, Y Li, N N Luo, et al. Research progress of deep-ultraviolet nonlinear optical crystals. Journal of Shandong Normal University (Natural Science), 36, 234-252(2021).
[21] Q Liu, X P Yan, H L Chen, et al. New progress in high-power all-solid-state ultraviolet laser. Chinese Journal of Lasers, 37, 2289-2298(2010).
[22] Devi K, Parsa S, EbrahimZadeh M. Birefringentmulticrystal, singlepass, continuouswave secondharmonicgeneration in deepultraviolet[C]Nonlinear Optics its Applications IV. International Society f Optics Photonics, 2016, 9894: 98940R.
[23] R Bhandari, T Taira, A Miyamoto, et al. > 3 MW peak power at 266 nm using Nd: YAG/Cr4+: YAG microchip laser and fluxless-BBO. Optical Materials Express, 2, 907-913(2012).
[24] S C Kumar, J C Casals, J Wei, et al. High-power, high-repetition-rate performance characteristics of β-BaB2O4 for single-pass picosecond ultraviolet generation at 266 nm. Optics Express, 23, 28091-28103(2015).
[25] A S Rao, N A Chaitanya, G K Samanta. High-power, high repetition-rate, ultrafast fibre laser based source of DUV radiation at 266 nm. OSA Continuum, 2, 99-106(2019).
[26] T Kojima, S Konno, S Fujikawa, et al. 20-W ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser. Optics Letters, 25, 58-60(2000).
[27] G Wang, A Geng, Y Bo, et al. 28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser. Optics Communications, 259, 820-822(2006).
[28] K Kohno, Y Orii, H Sawada, et al. High-power DUV picosecond pulse laser with a gain-switched-LD-seeded MOPA and large CLBO crystal. Optics Letters, 45, 2351-2354(2020).
[29] Y Orii, K Kohno, H Tanaka, et al. Stable 10, 000-hour operation of 20-W deep ultraviolet laser generation at 266 nm. Optics Express, 30, 11797-11808(2022).
[30] L R Wang, G L Wang, X Zhang, et al. Generation of ultraviolet radiation at 266 nm with RbBe2BO3F2 crystal. Chinese Physics Letters, 29, 064203(2012).
[31] L Liu, H Zhou, X He, et al. Hydrothermal growth and optical properties of RbBe2BO3F2 crystals. Journal of Crystal Growth, 348, 60-64(2012).
[32] L Wang, N Zhai, L Liu, et al. High-average-power 266 nm generation with a KB2BO3F2 prism-coupled device. Optics Express, 22, 27086-27093(2014).
[33] C Liu, L Liu, X Zhang, et al. Crystal growth and optical properties of non-UV absorption K2Al2B2O7 crystals. Journal of Crystal Growth, 318, 618-620(2011).
[34] Y Wang, L Wang, X Gao, et al. Growth, characterization and the fourth harmonic generation at 266 nm of K2Al2B2O7 crystals without UV absorptions and Na impurity. Journal of Crystal Growth, 348, 1-4(2012).
[35] Q Liu, X Yan, M Gong, et al. High-power 266 nm ultraviolet generation in yttrium aluminum borate. Optics Letters, 36, 2653-2655(2011).
[36] S Ilas, P Loiseau, G Aka, et al. 240 kW peak power at 266 nm in nonlinear YAl3(BO3)4 single crystal. Optics Express, 22, 30325-30332(2014).
[37] Zheng L, Ren J, Loiseau P, et al. 1 MW peak power at 266 nm in nonlinear YAl3(BO3)4 (YAB) single crystal[C]2015 Conference on Lasers ElectroOptics (CLEO), IEEE, 2015: 12.
[38] H Huang, J Yao, Z Lin, et al. NaSr3Be3B3O9F4: A promising deep-ultraviolet nonlinear optical material resulting from the cooperative alignment of the [Be3B3O12F]10- anionic group. Angewandte Chemie, 123, 9307-9310(2011).
[39] Z Fang, Z Hou, F Yang, et al. High-efficiency UV generation at 266 nm in a new nonlinear optical crystal NaSr3Be3B3O9F4. Optics Express, 25, 26500-26507(2017).
[40] X D Chen, L Liu, L Wang, et al. Fourth-harmonic-generation of 266-nm ultraviolet nanosecond laser with NaSr3Be3B3O9F4 crystal. Optical Engineering, 59, 116110(2020).
[41] K Devi, S Parsa, M Ebrahim-Zadeh. Continuous-wave, single-pass, single-frequency second-harmonic-generation at 266 nm based on birefringent-multicrystal scheme. Optics Express, 24, 8763-8775(2016).
[42] T W Hansch, B Couillaud. Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity. Optics Communications, 35, 441-444(1980).
[43] Bell A S, Malcolm G P A, Maker G T. Highpower continuouswave UV generation[C]Solid State Lasers VIII. International Society f Optics Photonics, 1999, 3613: 151154.
[44] Zanger E, Müller R, Liu B, et al. Diodepumped cw all solidstate laser at 266 nm[C]Advanced Solid State Lasers, Optical Society of America, 1999: MB4.
[45] J Sakuma, Y Asakawa, M Obara. Generation of 5-W deep-UV continuous-wave radiation at 266 nm by an external cavity with a CsLiB6O10 crystal. Optics Letters, 29, 92-94(2004).
[46] G Z Chen, Y Shen, Q Liu, et al. Generation of 266 nm continuous-wave with elliptical Gaussian beams. Acta Physica Sinica, 63, 171-175(2014).
[47] B Zhao, W X Qin, F Q Li, et al. All-solid-state CW single-frequency deep UV 266 nm laser. Journal of Quantum Optics, 26, 194-201(2020).
[48] Drever R W P. Laser interferometer gravitational radiation detects[C]AIP Conference Proceedings. American Institute of Physics, 1983, 96(1): 336346.
[49] Y Peng, Y Zhao, Y Li, et al. Three methods to lock the second harmonic generation for 461 nm. Chinese Journal of Lasers, 37, 345-350(2010).
[50] Li C. Research of sideb modulation PDH laser frequency stabilization technology[D]. Hangzhou: China Jiliang University, 2017. (in Chinese)
[51] L Y Liu, M Oka, W Wiechmann, et al. Longitudinally diode-pumped continuous-wave 3.5-W green laser. Optics Letters, 19, 189-191(1994).
[52] M Oka, L Y Liu, W Wiechmann, et al. All solid-state continuous-wave frequency-quadrupled Nd: YAG laser. IEEE Journal of Selected Topics in Quantum Electronics, 1, 859-866(1995).
[53] Oka M, Takeda M, Kashiwagi T, et al. An allsolidstate continuouswave 266 nm laser f optical disk mastering[C]Optical Data Stage, Optica Publishing Group, 1998: TuA. 2.
[54] Eguchi N, Oka M, Imai Y, et al. New deepUV microscope[C]Optical Engineering f Sensing Nanotechnology (ICOSN''99), SPIE, 1999, 3740: 394397.
[55] T Südmeyer, Y Imai, H Masuda, et al. Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fiber amplifier. Optics Express, 16, 1546-1551(2008).