• Photonics Research
  • Vol. 4, Issue 1, 0021 (2016)
Zuxiang Li, Linjie Zhou*, Liangjun Lu, Shuoyi Zhao, Dong Li, and Jianping Chen
Author Affiliations
  • State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of ElectronicEngineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.1364/prj.4.000021 Cite this Article Set citation alerts
    Zuxiang Li, Linjie Zhou, Liangjun Lu, Shuoyi Zhao, Dong Li, Jianping Chen. 4 × 4 nonblocking optical switch fabric based on cascaded multimode interferometers[J]. Photonics Research, 2016, 4(1): 0021 Copy Citation Text show less
    References

    [1] B. G. Lee, A. V. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, Y. A. Vlasov. Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits. J. Lightwave Technol., 32, 743-751(2014).

    [2] K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, H. Kawashima. Ultra-compact 8×8 strictly-non-blocking Si-wire PILOSS switch. Opt. Express, 22, 3887-3894(2014).

    [3] L. Zhou, L. Lu, Z. Li, J. Chen. Broadband 4×4 non-blocking optical switch fabric based on Mach–Zehnder interferometers. 13th International Conference on Optical Communications and Networks, 1-4(2014).

    [4] K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, H. Kawashima. 32×32 strictly non-blocking si-wire optical switch on ultra-small die of 11×25  mm2. Optical Fiber Communication Conference, M2B.5(2015).

    [5] T. J. Seok, N. Quack, S. Han, M. C. Wu. 50×50 digital silicon photonic switches with MEMS-actuated adiabatic couplers. Optical Fiber Communication Conference, M2B.4(2015).

    [6] J. Xing, Z. Li, P. Zhou, X. Xiao, J. Yu, Y. Yu. Nonblocking 4×4 silicon electro-optic switch matrix with push-pull drive. Opt. Lett., 38, 3926-3929(2013).

    [7] M. Yang, W. M. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, Y. A. Vlasov. Non-blocking 4×4 electro-optic silicon switch for on-chip photonic networks. Opt. Express, 19, 47-54(2011).

    [8] N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, M. Lipson. Optical 4×4 hitless silicon router for optical networks-on-chip (NoC). Opt. Express, 16, 15915(2008).

    [9] A. W. Poon, X. Luo, F. Xu, H. Chen. Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection. Proc. IEEE, 97, 1216-1238(2009).

    [10] L. Yang, Y. Xia, F. Zhang, Q. Chen, J. Ding, P. Zhou, L. Zhang. Reconfigurable nonblocking 4-port silicon thermo-optic optical router based on Mach–Zehnder optical switches. Opt. Lett., 40, 1402-1405(2015).

    [11] L. Lu, L. Zhou, S. Li, Z. Li, X. Li, J. Chen. 4×4 nonblocking silicon thermo-optic switches based on multimode interferometers. J. Lightwave Technol., 33, 857-864(2015).

    [12] Y. Li, Y. Zhang, L. Zhang, A. W. Poon. Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives Invited.. Photon. Res., 3, B10(2015).

    [13] J. Xing, Z. Li, Y. Yu, J. Yu. Low cross-talk 2×2 silicon electro-optic switch matrix with a double-gate configuration. Opt. Lett., 38, 4774-4776(2013).

    [14] N. Xie, T. Hashimoto, K. Utaka. Design and performance of low-power, high-speed, polarization-independent and wideband polymer buried- channel waveguide thermo-optic switches. J. Lightwave Technol., 32, 3067-3073(2014).

    [15] L. Lu, L. Zhou, X. Li, J. Chen. Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach–Zehnder interferometers. Opt. Lett., 39, 1633-1636(2014).

    [16] N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Worhoff, A. Driessen. Analysis of generalized Mach-Zehnder interferometers for variable-ratio power splitting and optimized switching. J. Lightwave Technol., 17, 2542-2550(1999).

    [17] P. E. Morrissey, H. Yang, R. N. Sheehan, B. Corbett, F. H. Peters. Design and fabrication tolerance analysis of multimode interference couplers. Opt. Commun., 340, 26-32(2015).

    [18] L. W. Cahill. The modelling of integrated optical power splitters and switches based on generalised Mach–Zehnder devices. Opt. Quantum Electron., 36, 165-173(2004).

    [19] H. Zhou, J. Song, E. K. Chee, C. Li, H. Zhang, G. Lo. A compact thermo-optical multimode-interference silicon-based 1×4 nano-photonic switch. Opt. Express, 21, 21403-21413(2013).

    [20] W. Wang, H. Zhou, J. Yang, M. Wang, X. Jiang. Highly integrated 3×3 silicon thermo-optical switch using a single combined phase shifter for optical interconnects. Opt. Lett., 37, 2307-2309(2012).

    [21] G. T. Reed, A. P. Knights. Silicon Photonics(2008).

    [22] L. Zhou, X. Zhang, L. Lu, J. Chen. Tunable vernier microring optical filters with p-i-p type microheaters. IEEE Photon. J., 5, 6601211(2013).

    [23] Q. Wu, L. Zhou, X. Sun, H. Zhu, L. Lu, J. Chen. Silicon thermo-optic variable optical attenuators based on Mach–Zehnder interference structures. Opt. Commun., 341, 69-73(2015).

    Zuxiang Li, Linjie Zhou, Liangjun Lu, Shuoyi Zhao, Dong Li, Jianping Chen. 4 × 4 nonblocking optical switch fabric based on cascaded multimode interferometers[J]. Photonics Research, 2016, 4(1): 0021
    Download Citation