• Chinese Optics Letters
  • Vol. 21, Issue 8, 081301 (2023)
Hailong Han1、2, Xingyu Zhang1、2, You Xiao1、2, Pusheng Yuan1、2, Huiqin Yu1、2, Shuna Wang1、2, Heng Li3, Weikeng Xie3, Mingzhi Lu3, Lingyun Li1、2, Xiaoping Liu4、*, Hao Li1、2, and Lixing You1、2
Author Affiliations
  • 1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China
  • 2CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China
  • 3Ori-chip Optoelectronics Technology Ltd., Ningbo 315000, China
  • 4School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • show less
    DOI: 10.3788/COL202321.081301 Cite this Article Set citation alerts
    Hailong Han, Xingyu Zhang, You Xiao, Pusheng Yuan, Huiqin Yu, Shuna Wang, Heng Li, Weikeng Xie, Mingzhi Lu, Lingyun Li, Xiaoping Liu, Hao Li, Lixing You. Cryogenic thermo-optic thin-film lithium niobate modulator with an NbN superconducting heater[J]. Chinese Optics Letters, 2023, 21(8): 081301 Copy Citation Text show less
    References

    [1] O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, S. Tanzilli. Quantum photonics at telecom wavelengths based on lithium niobate waveguides. J. Opt., 18, 104001(2016).

    [2] T. P. McKenna, H. S. Stokowski, V. Ansari, J. Mishra, M. Jankowski, C. J. Sarabalis, J. F. Herrmann, C. Langrock, M. M. Fejer, A. H. Safavi-Naeini. Ultra-low-power second-order nonlinear optics on a chip. Nat. Commun., 13, 4532(2022).

    [3] M. Li, L. Chang, L. Wu, J. Staffa, J. Ling, U. A. Javid, Y. He, R. Lopez-rios, S. Xue, T. J. Morin, B. Shen, H. Wang, S. Zeng, L. Zhu, K. J. Vahala, J. E. Bowers, Q. Lin. Integrated Pckels laser. Nat. Commun., 13, 5344(2022).

    [4] D. Zhu, L. Shao, M. Yu, R. Cheng, B. Desiatov, C. J. Xin, Y. Hu, J. Holzgrafe, S. Ghosh, A. Shams-Ansari, E. Puma, N. Sinclair, C. Reimer, M. Zhang, M. Lončar. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242(2021).

    [5] J. Wang, F. Sciarrino, A. Laing, M. G. Thompson. Integrated photonic quantum technologies. Nat. Photonics, 14, 273(2020).

    [6] A. W. Elshaari, W. Pernice, K. Srinivasan, O. Benson, V. Zwiller. Hybrid integrated quantum photonic circuits. Nat. Photonics, 14, 285(2020).

    [7] Y. Liu, H. Li, J. Liu, S. Tan, Q. Lu, W. Guo. Low Vπ thin-film lithium niobate modulator fabricated with photolithography. Opt. Express, 29, 6320(2021).

    [8] X. Liu, P. Ying, X. Zhong, J. Xu, Y. Han, S. Yu, X. Cai. Highly efficient thermo-optic tunable micro-ring resonator based on an LNOI platform. Opt. Lett., 45, 6318(2020).

    [9] W. Cheng, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. J. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).

    [10] O. T. Celik, C. J. Sarabalis, F. M. Mayor, H. S. Stokowski, J. F. Herrmann, T. P. McKenna, N. R. Lee, W. Jiang, K. K. Multani, A. H. Safavi-Naeini. High-bandwidth CMOS-voltage-level electro-optic modulation of 780 nm light in thin-film lithium niobate. Opt. Express, 30, 23177(2022).

    [11] M. Wang, J. Li, H. Yao, X. Li, J. Wu, K. S. Chiang, K. Chen. Thin-film lithium-niobate modulator with a combined passive bias and thermo-optic bias. Opt. Express, 30, 39706(2022).

    [12] S. Xue, Z. Shi, J. Ling, Z. Gao, Q. Hu, K. Zhang, G. Valentine, X. Wu, J. Staffa, U. A. Javid, Q. Lin. Full-spectrum visible electro-optic modulator. Optica, 10, 125(2023).

    [13] J. Ling, Y. He, R. Luo, M. Li, H. Liang, Q. Lin. Athermal lithium niobate microresonator. Opt. Express, 28, 21682(2020).

    [14] J. Wang, B. Zhu, Z. Hao, F. Bo, X. Wang, F. Gao, Y. Li, G. Zhang, J. Xu. Thermo-optic effects in on-chip lithium niobate microdisk resonators. Opt. Express, 24, 21869(2016).

    [15] C. Zhong, H. Ma, C. Sun, M. Wei, Y. Ye, B. Tang, P. Zhang, R. Liu, J. Li, L. Li, H. Lin. Fast thermo-optical modulators with doped-silicon heaters operating at 2 µm. Opt. Express, 29, 23508(2021).

    [16] A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, W. Bogaerts. Comparison of heater architectures for thermal control of silicon photonic circuits. 10th International Conference on Group IV Photonics (GFP), 83(2013).

    [17] M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, G. N. Nielson. Adiabatic thermo-optic Mach-Zehnder switch. Opt. Lett., 38, 733(2013).

    [18] S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, Q. Bao. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale, 7, 20249(2015).

    [19] G. Chen, H. L. Lin, J. D. Ng, A. J. Danner. Integrated thermally tuned Mach-Zehnder interferometer in Z-cut lithium niobate thin film. IEEE Photon. Technol. Lett., 33, 664(2021).

    [20] M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, Y. A. Vlasov. Non-blocking 4x4 electro-optic silicon switch for on-chip photonic networks. Opt. Express, 19, 47(2011).

    [21] M. Mendez-Astudillo, M. Okamoto, Y. Ito, T. Kita. Compact thermo-optic MZI switch in silicon-on-insulator using direct carrier injection. Opt. Express, 27, 899(2019).

    [22] D. H. David. The critical current of superconductors: an historical review. Low Temp. Phys., 27, 713(2001).

    [23] L. M. Joshi, A. Verma, A. Gupta, P. K. Rout, S. Husale, R. C. Budhani. Superconducting properties of NbN film, bridge and meanders. AIP Adv., 8, 055305(2018).

    [24] H. Han, L. Li, P. Yuan, H. Yu, S. Wang, L. You. High-speed optical links for data transfer out of 3.4K to room temperature. IEEE 15th Workshop on Low Temperature Electronics (WOLTE), 1(2022).

    [25] C. McConaghy, M. Lowry, R. A. Becker, B. E. Kincaid. The performance of pigtailed annealed proton exchange LiNbO3 modulators at cryogenic temperatures. IEEE Photon. Technol. Lett., 8, 1480(1996).

    [26] F. Thiele, F. V. Bruch, V. Quiring, R. Ricken, H. Herrmann, C. Eigner, C. Silberhorn, T. J. Bartley. Cryogenic electro-optic polarisation conversion in titanium in-diffused lithium niobate waveguides. Opt. Express, 28, 28961(2020).

    [27] Y. Pellan, G. Dousselin, J. Pinei. Temperature and magnetic field dependence of NbN film resistivity: 3D weak localization effects. J. Low Temp. Phys., 78, 63(1990).

    [28] G. Ghosh. Thermo-optic coefficients of LiNbO3, LiIO3, and LiTaO3 nonlinear crystals. Opt. Lett., 19, 1391(1994).

    [29] J. Komma, C. Schwarz, G. Hofmann, D. Heinert, R. Nawrodt. Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett., 101, 041905(2012).

    Hailong Han, Xingyu Zhang, You Xiao, Pusheng Yuan, Huiqin Yu, Shuna Wang, Heng Li, Weikeng Xie, Mingzhi Lu, Lingyun Li, Xiaoping Liu, Hao Li, Lixing You. Cryogenic thermo-optic thin-film lithium niobate modulator with an NbN superconducting heater[J]. Chinese Optics Letters, 2023, 21(8): 081301
    Download Citation