• Laser & Optoelectronics Progress
  • Vol. 56, Issue 2, 021603 (2019)
Haiyan Zhang1、2、* and Lichun Wang2
Author Affiliations
  • 1 Guangling College of Yangzhou University, Yangzhou, Jiangsu 225000, China
  • 2 Physical Science and Technology College, Yangzhou University, Yangzhou, Jiangsu 225002, China
  • show less
    DOI: 10.3788/LOP56.021603 Cite this Article Set citation alerts
    Haiyan Zhang, Lichun Wang. Vacancy Formation During Solidification of Metal Ag[J]. Laser & Optoelectronics Progress, 2019, 56(2): 021603 Copy Citation Text show less
    References

    [1] Chen B, Zhu W H, Chen P et al. Mechanism of femtosecond laser ablating CuZr amorphous alloy[J]. Laser & Optoelectronics Progress, 52, 041406(2015).

    [2] Asta M, Beckermann C, Karma A et al. Solidification microstructures and solid-state parallels: recent developments, future directions[J]. Acta Materialia, 57, 941-971(2009). http://www.sciencedirect.com/science/article/pii/S1359645408007234

    [3] Chernov A A. Notes on interface growth kinetics 50 years after Burton, Cabrera and Frank[J]. Journal of Crystal Growth, 264, 499-518(2004). http://www.sciencedirect.com/science/article/pii/S0022024803022413

    [4] Zhu C Y, Lü Z W, He W M et al. Solid SBS media and entirely solidification of the SBS Phase-conjugation mirrors[J]. Laser & Optoelectronics Progress, 43, 65-68(2006).

    [5] Buta D, Asta M, Hoyt J J. Kinetic coefficient of steps at the Si(111) crystal-melt interface from molecular dynamics simulations[J]. The Journal of Chemical Physics, 127, 074703(2007). http://scitation.aip.org/content/aip/journal/jcp/127/7/10.1063/1.2754682

    [6] Maltsev I, Mirzoev A, Danilov D et al. Atomistic and mesoscale simulations of free solidification in comparison[J]. Modelling and Simulation in Materials Science and Engineering, 17, 055006(2009). http://pubs.rsc.org/en/content/articlehtml/2003/dt/b310085e

    [7] Gulam Razul M S, Hendry J G, Kusalik P G. Mechanisms of heterogeneous crystal growth in atomic systems: insights from computer simulations[J]. The Journal of Chemical Physics, 123, 204722(2005). http://www.ncbi.nlm.nih.gov/pubmed/16351308

    [8] Broughton J Q, Gilmer G H, Jackson K A. Crystallization rates of a Lennard-Jones liquid[J]. Physical Review Letters, 49, 1496-1500(1982). http://prola.aps.org/abstract/PRL/v49/i20/p1496_1

    [9] Geysermans P, Gorse D, Pontikis V. Molecular dynamics study of the solid-liquid interface[J]. The Journal of Chemical Physics, 113, 6382-6389(2000). http://scitation.aip.org/content/aip/journal/jcp/113/15/10.1063/1.1290730

    [10] Yang Y, Olmsted D L, Asta M et al. Atomistic characterization of the chemically heterogeneous Al-Pb solid-liquid interface[J]. Acta Materialia, 60, 4960-4971(2012). http://www.sciencedirect.com/science/article/pii/S1359645412003266

    [11] Yang G Q, Li J F, Shi Q W et al. Structural and dynamical properties of heterogeneous solid-liquid Ta-Cu interfaces: a molecular dynamics study[J]. Computational Materials Science, 86, 64-72(2014). http://www.sciencedirect.com/science/article/pii/S0927025614000342

    [12] Hoyt J J, Asta M. Atomistic computation of liquid diffusivity, solid-liquid interfacial free energy, and kinetic coefficient in Au and Ag[J]. Physical Review B, 65, 214106(2002). http://adsabs.harvard.edu/abs/2002PhRvB..65u4106H

    [13] Sun D Y, Asta M, Hoyt J J. Crystal-melt interfacial free energies and mobilities in FCC and BCC Fe[J]. Physical Review B, 69, 174103(2004). http://adsabs.harvard.edu/abs/2004PhRvB..69q4103S

    [14] Ashkenazy Y, Averback R S. Atomic mechanisms controlling crystallization behaviour in metals at deep under coolings[J]. Europhysics Letters, 79, 26005(2007). http://adsabs.harvard.edu/abs/2007EL.....7926005A

    [15] Buta D, Asta M, Hoyt J J. Atomistic simulation study of the structure and dynamics of a faceted crystal-melt interface[J]. Physical Review E, 78, 031605(2008). http://www.ncbi.nlm.nih.gov/pubmed/18851047

    [16] Piaggi P M, Parrinello M. Entropy based fingerprint for local crystalline order[J]. Journal of Chemical Physics, 147, 114112(2017). http://europepmc.org/abstract/MED/28938808

    [17] Beckera C A, Asta M, Hoyt J J et al. Equilibrium adsorption at crystal-melt interfaces in Lennard-Jones alloys[J]. The Journal of Chemical Physics, 124, 164708(2006). http://europepmc.org/abstract/MED/16674158

    [18] Kerrache A, Horbach J, Binder K. Molecular-dynamics computer simulation of crystal growth and melting in Al50Ni50[J]. Europhysics Letters, 81, 58001(2008).

    [19] Qi C, Li J F, Xu B et al. Atomistic characterization of solid-liquid interfaces in the Cu-Ni binary alloy system[J]. Computational Materials Science, 125, 72-81(2016).

    [20] Zhou L L, Yang R Y, Tian Z A et al. Molecular dynamics simulation on structural evolution during crystallization of rapidly super-cooled Cu50Ni50 alloy[J]. Journal of Alloys and Compounds, 690, 633-639(2017). http://www.sciencedirect.com/science/article/pii/S092583881632552X

    [21] Zheng X Q, Yang Y, Gao Y F et al. Disorder trapping during crystallization of the B2-ordered NiAl compound[J]. Physical Review E, 85, 041601(2012). http://www.ncbi.nlm.nih.gov/pubmed/22680482

    [22] Kramer M J, Mendelev M I, Napolitano R E. In situ observation of antisite defect formation during crystal growth[J]. Physical Review Letters, 105, 245501(2010). http://europepmc.org/abstract/med/21231532

    [23] Yang Y, Humadi H, Buta D et al. Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts[J]. Physical Review Letters, 107, 025505(2011). http://europepmc.org/abstract/MED/21797620

    [24] Frenkel J. Kinetic theory of liquids[M]. New York: Dover Publications(1955).

    [25] Wilson H W. Reviews-On the velocity of solidification and viscosity of supercooled liquids[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50, 238-250(1900). http://pubs.acs.org/doi/pdf/10.1021/j150029a635

    [26] Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 117, 1-19(1995). http://dl.acm.org/citation.cfm?id=201628

    [27] Nosé S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 81, 511-519(1984). http://scitation.aip.org/content/aip/journal/jcp/81/1/10.1063/1.447334

    [28] Hoover W G. Canonical dynamics: equilibrium phase-space distributions[J]. Physical Review A, 31, 1695-1697(1985). http://www.cell.com/servlet/linkout?suffix=e_1_5_1_2_17_2&dbid=16&doi=10.1016/S0006-3495(02)75500-8&key=10.1103%2FPhysRevA.31.1695&cf=

    [29] Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method[J]. Journal of Applied Physics, 52, 7182-7190(1981). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5108554

    [30] Parinello M, Rahman A. Crystal structure and pair potentials: a molecular-dynamics study[J]. Physical Review Letters, 45, 1196-1199(1980). http://prola.aps.org/abstract/PRL/v45/i14/p1196_1

    [31] Foiles S M, Baskes M I, Daw M S. Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys[J]. Physical Review B, 33, 7983-7991(1986). http://www.tandfonline.com/servlet/linkout?suffix=CIT0022&dbid=8&doi=10.1080%2F14786435.2018.1456687&key=9938188

    [32] Davidchack R L, Laird B B. Crystal structure and interaction dependence of the crystal-melt interfacial free energy[J]. Physical Review Letters, 94, 086102(2005). http://europepmc.org/abstract/MED/15783906

    [33] Monk J, Yang Y, Mendelev M I et al. Determination of the crystal-melt interface kinetic coefficient from molecular dynamics simulations[J]. Modelling and Simulation in Materials Science and Engineering, 18, 015004(2009). http://adsabs.harvard.edu/abs/2010MSMSE..18a5004M

    [34] Mendelev M I, Rahman M J, Hoyt J J et al. Molecular-dynamics study of solid-liquid interface migration in FCC metals[J]. Modelling and Simulation in Materials Science and Engineering, 18, 074002(2010).

    [35] Sun D Y, Asta M, Hoyt J J. Kinetic coefficient of Ni solid-liquid interfaces from molecular-dynamics simulations[J]. Physical Review B, 69, 024108(2004). http://adsabs.harvard.edu/abs/2004PhRvB..69b4108S

    [36] Ashkenazy Y, Averback R S. Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals[J]. Acta Materialia, 58, 524-530(2010). http://www.sciencedirect.com/science/article/pii/S1359645409006260

    [37] Gao Y F, Yang Y, Sun D Y et al. Molecular dynamics simulations of the crystal-melt interface mobility in HCP Mg and BCC Fe[J]. Journal of Crystal Growth, 312, 3238-3242(2010). http://www.sciencedirect.com/science/article/pii/S0022024810005026

    Haiyan Zhang, Lichun Wang. Vacancy Formation During Solidification of Metal Ag[J]. Laser & Optoelectronics Progress, 2019, 56(2): 021603
    Download Citation