• High Power Laser and Particle Beams
  • Vol. 35, Issue 1, 012005 (2023)
Yechen Wang, Weiquan Wang, Tongpu Yu, Fuqiu Shao, and Yan Yin*
Author Affiliations
  • College of Science, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.11884/HPLPB202335.220216 Cite this Article
    Yechen Wang, Weiquan Wang, Tongpu Yu, Fuqiu Shao, Yan Yin. Production of highly-directional positron beam by relativistic femto-second laser irradiating micro-structured surface target[J]. High Power Laser and Particle Beams, 2023, 35(1): 012005 Copy Citation Text show less
    References

    [1] Adam J, Adamczyk L, Adams J R, et al. Measurement of e+ e momentum and angular distributions from linearly polarized photon collisions[J]. Physical Review Letters, 127, 052302(2021).

    [2] Guessoum N. Positron astrophysics and areas of relation to low-energy positron physics[J]. The European Physical Journal D, 68, 137(2014).

    [3] Weissleder R, Pittet M J. Imaging in the era of molecular oncology[J]. Nature, 452, 580-589(2008).

    [4] Mayer J, Hugenschmidt C, Schreckenbach K. Direct observation of the surface segregation of Cu in Pd by time-resolved positron-annihilation-induced Auger electron spectroscopy[J]. Physical Review Letters, 105, 207401(2010).

    [5] Nakashima K, Cowan T E, Takabe H. Electron-positron pair production by ultra-intense lasers[J]. AIP Conference Proceedings, 634, 323-328(2002).

    [6] Müller C. Nonlinear Bethe-Heitler pair creation with attosecond laser pulses at the LHC[J]. Physics Letters B, 672, 56-60(2009).

    [7] Krajewska K, Kamiński J Z. Breit-Wheeler process in intense short laser pulses[J]. Physical Review A, 86, 052104(2012).

    [8] Zhu Xinglong, Wang Weimin, Yu Tongpu, . Research progress of ultrabright γ-ray radiation and electron-positron pair production driven by extremely intense laser fields[J]. Acta Physica Sinica, 70, 085202(2021).

    [9] Gryaznykh D A, Kandiev Y Z, Lykov V A. Estimates of electron-positron pair production in the interaction of high-power laser radiation with high-Z targets[J]. Journal of Experimental and Theoretical Physics Letters, 67, 257-262(1998).

    [10] Myatt J, Delettrez J A, Maximov A V, et al. Optimizing electron-positron pair production on kilojoule-class high-intensity lasers for the purpose of pair-plasma creation[J]. Physical Review E, 79, 066409(2009).

    [11] Nakashima K, Takabe H. Numerical study of pair creation by ultraintense lasers[J]. Physics of Plasmas, 9, 1505-1512(2002).

    [12] Yan Yonghong, Wu Yuchi, Dong Kegong, . Simulation study of positron production from laser-solid interactions[J]. High Power Laser and Particle Beams, 27, 112006(2015).

    [13] Chen Hui, Wilks S C, Bonlie J D, et al. Relativistic positron creation using ultraintense short pulse lasers[J]. Physical Review Letters, 102, 105001(2009).

    [14] Chen Hui, Wilks S C, Meyerhofer D D, et al. Relativistic quasimonoenergetic positron jets from intense laser-solid interactions[J]. Physical Review Letters, 105, 015003(2010).

    [15] Wu Yuchi, Dong Kegong, Yan Yonghong, et al. Pair production by high intensity picosecond laser interacting with thick solid target at XingGuangIII[J]. High Energy Density Physics, 23, 115-118(2017).

    [16] Sarri G, Schumaker W, Di Piazza A, et al. Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams[J]. Physical Review Letters, 110, 255002(2013).

    [17] Sarri G, Poder K, Cole J M, et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory[J]. Nature Communications, 6, 6747(2015).

    [18] Cao Lihua, Gu Yuqiu, Zhao Zongqing, et al. Enhanced absorption of intense short-pulse laser light by subwavelength nanolayered target[J]. Physics of Plasmas, 17, 043103(2010).

    [19] Jiang Sheng, Ji Liangliang, Audesirk H, et al. Microengineering laser plasma interactions at relativistic intensities[J]. Physical Review Letters, 116, 085002(2016).

    [20] Wang Yechen, Yin Yan, Wang Weiquan, et al. Copious positron production by femto-second laser via absorption enhancement in a microstructured surface target[J]. Scientific Reports, 10, 5861(2020).

    [21] Jiang Sheng, Link A, Canning D, et al. Enhancing positron production using front surface target structures[J]. Applied Physics Letters, 118, 094101(2021).

    [22] Hu Lixiang, Yu Tongpu, Sheng Zhengming, et al. Attosecond electron bunches from a nanofiber driven by Laguerre-Gaussian laser pulses[J]. Scientific Reports, 8, 7282(2018).

    [23] Ridgers C O, Brady C S, Duclous R, et al. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids[J]. Physical Review Letters, 108, 165006(2012).

    [24] Böhlen T T, Cerutti F, Chin M P W, et al. The FLUKA code: developments and challenges for high energy and medical applications[J]. Nuclear Data Sheets, 120, 211-214(2014).

    Yechen Wang, Weiquan Wang, Tongpu Yu, Fuqiu Shao, Yan Yin. Production of highly-directional positron beam by relativistic femto-second laser irradiating micro-structured surface target[J]. High Power Laser and Particle Beams, 2023, 35(1): 012005
    Download Citation