• High Power Laser and Particle Beams
  • Vol. 35, Issue 1, 012005 (2023)
Yechen Wang, Weiquan Wang, Tongpu Yu, Fuqiu Shao, and Yan Yin*
Author Affiliations
  • College of Science, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.11884/HPLPB202335.220216 Cite this Article
    Yechen Wang, Weiquan Wang, Tongpu Yu, Fuqiu Shao, Yan Yin. Production of highly-directional positron beam by relativistic femto-second laser irradiating micro-structured surface target[J]. High Power Laser and Particle Beams, 2023, 35(1): 012005 Copy Citation Text show less

    Abstract

    Laser driven positron source has the advantages of high yield, short pulse width and high energy. In this paper, particle-in-cell simulation and Monte-Carlo simulation are combined to simulate the process of positron production in the interaction of relativistic femtosecond laser with a micro-structured surface target (MST) with a micron-scale wire array on the surface. The results show that when the laser energy is about 6 J and the pulse width is about 40 fs, fast electrons with the yield of 1011 orders of magnitude and the cut-off energy of about 120 MeV can be obtained. When the electrons bombard a high-Z conversion target, positrons with the yield of 109 orders of magnitude, and cut-off energy about 50 MeV are obtained. The divergence angle of the positron beam is 4.92°. Compared with planar targets, the use of MSTs can benefit the yield, energy and directivity of positrons.
    Yechen Wang, Weiquan Wang, Tongpu Yu, Fuqiu Shao, Yan Yin. Production of highly-directional positron beam by relativistic femto-second laser irradiating micro-structured surface target[J]. High Power Laser and Particle Beams, 2023, 35(1): 012005
    Download Citation