• Journal of Infrared and Millimeter Waves
  • Vol. 34, Issue 5, 513 (2015)
S Ramesh1 and T Rama Rao2
Author Affiliations
  • 1Department of Electronics & communication Engineering, Valliammai Engineering College, Kattankulathur, Tamilnadu, India
  • 2RADMIC, Department of Telecommunication Engineering, SRM University, Kattankulathur, Tamilnadu, India
  • show less
    DOI: 10.11972/j.issn.1001-9014.2015.05.001 Cite this Article
    S Ramesh, T Rama Rao. Millimeter wave dielectric loaded exponentially tapered slot antenna array using substrate integrated waveguide for gigabit wireless communications[J]. Journal of Infrared and Millimeter Waves, 2015, 34(5): 513 Copy Citation Text show less
    References

    [1] Rappaport T S, Murdock J N, Gutierrez F. State of the Art in 60-GHz Integrated Circuits and Systems for Wireless Communications [J]. P. IEEE, 2011, 99(8):1390-6.

    [2] Smulders P. Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions [J]. IEEE Commn. Mag., 2002, 40(1):140-7.

    [3] Meinel H H. Commercial applications of millimeter waves-History, present status and future trends [J]. IEEE Tran. Microwave Theory Tech., 1995, 43(7): 1639-3.

    [4] SU Khiong Yong, Chia-Chin Chong. An Overview of Multi gigabit Wireless through Millimeter Wave Technology: Potentials and Technical Challenges [J]. EURASIP Wireless Communications and Networking, 2007, 2007:78907.

    [5] XIAO Shao-Qiu , ZHOU Ming-Tuo, ZHANG Yan. Millimeter Wave Technology for Wireless LAN, PAN and MAN [M].Auerbach Publications, 2008.

    [6] HUANG Kao-Cheng, David J. Edwards. Millimeter Wave Antennas for Gigabit Wireless Communications [M]. John Wiley & Sons Ltd Publications, 2008.

    [7] Deslandes D, Wu K. Single-substrate integration technique of planar circuits and waveguide Filters [J]. IEEE Trans. on Microwave Theory Tech., 2003, 51(2): 593-6.

    [8] Ramesh S, Rao T R. Dielectric loaded exponentially tapered slot antenna utilizing substrate integrated waveguide technology for millimeter wave applications [J]. Progress In Electromagnetics Research C, 2013, 42: 149-4.

    [9] Hosseininejad S E, Komjani N, Oraizim H, Noghani M. T. Optimum design of SIW longitudinal slot array antennas with specified radiation patterns [J]. Applied Computational Electromagnetics Society, 2012, 27(4): 320-5.

    [10] Rezaiesarlak R, Salehi M, Mehrshahi E. Hybrid of moment method and mode matching technique for full-wave analysis of SIW circuits [J].Applied Computational Electromagnetics Society, 2011, 26(8): 688-5.

    [11] Bakhtafrooz A, Borji A, Busuioc D. Novel two-layer millimeter-wave slot array antennas based on substrate integrated waveguides [J].Progress in Electromagnetics Research, 2010, 109: 475-1.

    [12] Gibson J P. The vivaldi aerial [J]. P. 9th European Microwave Conference, Brighton, U.K., 1979, 101-105.

    [13] Gazit E. Improved design of the vivaldi antenna [J]. P. IEE, 1988, 135 (2):89-2.

    [14] Yngvesson K S, Korzeniowski T, Kim Y, et al. The tapered slot antenna-A new integrated element for millimeter wave applications [J]. IEEE Tran. on Microwave Theory Tech., 1989, 37(2):365-4.

    [15] Hood A Z, Karacolak T, Topsakal E. A small antipodal Vivaldi antenna for ultra-wide-band applications [J]. IEEE Antennas Wireless Propagation Letters, 2008, 7: 656-660.

    [16] Wu K, Deslandes D, Cassivi Y. The substrate integrated circuits-Anew concept for high-frequency electronics and optoelectronics [J]. P. 6th Int. Conf. Telecommun. Modern Satellite, Cable Broadcasting Service, 2003, 1(1):1-3.

    [17] Costanzo S, Casula G A, Borgia A, et al.. Synthesis of Slot Arrays on Integrated Waveguides [J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9:962-5.

    [18] Xu F, Wu K. Guided-wave and leakage characteristics of substrate integrated waveguide [J]. IEEE Tran. on Microwave Theory Tech., 2005, 53(1): 66-2.

    [19] Yan L W, Hong W, Wu K, et al. J. Investigations of the propagation characteristics of the substrate integrated waveguide based on the method of lines [J]. IEE Proceedings-Microwaves, Antennas and Propagation, 2005, 152(1): 35-2.

    [20] Deslandes D, Wu K, Integrated microstrip and rectangular waveguide in planar form [J]. IEEE Microwave Wireless Comp. Letters, 2001, 11(2):68-70.

    [21] Langley D, Hall P, Newham P. Balanced antipodal Vivaldi antenna for wide bandwidth phased arrays [J]. IEE Proc. Microwave Antennas Propag., 1996, 143 (2): 97-102.

    [22] Yang Y, Wang Y, Fathy A E, Design of compact Vivaldi antenna arrays for UWB see through wall applications [J]. Progress in Electromagnetics Research, 2008, 82: 401-18.

    [23] Hood A. Z, Karacolak T, Topsakal E. A small antipodal vivaldi antenna for Ultra-Wide-Band applications, [J]. IEEE Antennas and Wireless Propagation Letters 2008, 7: 556-560.

    [24] Kedar A, Beenamole K. S., Wide Beam Tapered Slot Antenna for Wide Angle Scanning Phased Array Antenna [J]. Progress In Electromagnetics Research B, 2011, 27: 235-51.

    [25] Zhang Y S, Hong W, A Millimeter-Wave Gain Enhanced Multi-Beam Antenna Based on a Coplanar Cylindrical Dielectric Lens [J]. IEEE Transactions on Antennas and Propagation, 2012, 60(7): 3485-3488.

    [26] Nocedal J, Wright S J. Numerical Optimization [M]. Springer, 2000.

    [27] Ramesh S, Rao T. R., Dielectric Loaded Exponentially Tapered Slot Antenna for Wireless Communications at 60GHz [J]. Progress In Electromagnetics Research C, 2013, 38: 43-54.

    S Ramesh, T Rama Rao. Millimeter wave dielectric loaded exponentially tapered slot antenna array using substrate integrated waveguide for gigabit wireless communications[J]. Journal of Infrared and Millimeter Waves, 2015, 34(5): 513
    Download Citation