• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 5, 533 (2018)
ZHANG Zhen-Ya1、2、3、*, LIU Xiao-Li2, and WEN Xiao-Dong1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.05.005 Cite this Article
    ZHANG Zhen-Ya, LIU Xiao-Li, WEN Xiao-Dong. Enhance absorption based on the resonance of localized surface plasmon modes in a metamaterial absorber[J]. Journal of Infrared and Millimeter Waves, 2018, 37(5): 533 Copy Citation Text show less
    References

    [1] Cai W, Chettiar U K, Kildishev A V, et al. Optical cloaking with metamaterials [J]. Nature Photonics 2007, 1: 224-227.

    [2] Engheta N, Alù A. Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights [J]. Optics Express, 2007, 15(6):3318-3332.

    [3] Lim S, Caloz C, Itoh T. Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth [J]. IEEE Transactions On Microwave Theory And Techniques, 2004,52(12): 2678-2690.

    [4] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006. 314: 977-980.

    [5] Popov E, Tsonev L, Maystre D, Losses of plasmon surface wave on metallic grating [J]. J. Mod. Opt, 1990,37: 379-387.

    [6] Popov, Maystre D, McPhedran R C, et al. Total absorption of unpolarized light by crossed gratings [J]. Opt. Express, 2008,16:6146-6155.

    [7] Teperik T V, García de Abajo F J, Borisov A G, et al. Omnidirectional absorption in nanostructured metal surfaces, Nat. Photonics, 2008,2:299-301.

    [8] Hu H, Ma C, Liu Z, Plasmonic dark field microscopy[J]. Appl. Phys. Lett, 2010, 96: 113107-113109.

    [9] Hao Q, Juluri B K, Zheng Y B, et al, Effects of intrinsic fano interference on surface enhanced raman spectroscopy: comparison between platinum and gold[J]. J. Phys. Chem. C, 2010, 114(42): 18059-18066.

    [10] Xiao S, Chettiar U K, Kildishev A V, et al, Tunable magnetic response of metamaterials[J]. Appl. Phys. Lett, 2009, 95: 033115-033115.

    [11] Munday J N, Atwater H A, Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings[J], Nano Lett, 2011, 11:2195-2201.

    [12] Diem M, Koschny T, Soukoulis C M, Wide-angle perfect absorber/thermal emitter in the terahertz regime[J]. Phys. Rev. B, 2009,79: 033101-033104.

    [13] Rosenberg J, Shenoi R V, Vandervelde T E, et al, A multispectral and polarization-selective surface-plasmon resonant midinfrared detector[J]. Appl. Phys. Lett, 2009, 95:161101-161103.

    [14] Haes A J, Van Duyne R P,A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles[J]. J. Am. Chem. Soc, 2002, 124: 10596-10604.

    [15] Hou B, Hang Z H, Wen W, et al, Microwave transmission through metallic hole arrays: Surface electric field measurements[J]. Appl. Phys. Lett, 2006,89: 131917-131919.

    [16] Manjavacas A, García de Abajo F J, Robust Plasmon Waveguides in Strongly Interacting Nanowire Arrays[J]. Nano Lett, 2009, 9:1285-1288.

    [17] Fang X, Li Z, Long Y, H. et al, Surface-Plasmon-Polariton Assisted Diffraction in Periodic Subwavelength Holes of Metal Films with Reduced Interplane Coupling[J]. Phys. Rev. Lett, 2007, 99: 066805-066812.

    [18] Ebbesen T W, Lezec H J, Ghaemi H F, et al, Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391: 667-669.

    [19] Degiron A, Ebbesen T W, The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures[J]. J. Opt. A, Pure Appl. Opt, 2005, 7: S90-S96.

    [20] Yakakura Y, Optical Resonance in a Narrow Slit in a Thick Metallic Screen, Phys. Rev. Lett, 2001, 86: 5601-5604.

    [21] Kreibig U, Vollmer M, Optical Properties of Metal Clusters, Springer Series in Material Science[J]. Springer-Verlag, Berlin, 1995, 25: 187-201.

    [22] Murray W A, Suckling J R, Barnes W L, Overlayers on Silver Nanotriangles: Field Confinement and Spectral Position of Localized Surface Plasmon Resonances[J]. Nano Lett, 2006, 6: 1772-1777.

    [23] Auguié B, Barnes W L, Collective Resonances in Gold Nanoparticle Arrays[J]. Phys. Rev. Lett, 2008, 101: 43902-143904.

    [24] Lance Kelly K, Coronado E, Zhao L L, et al, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment[J]. The Journal of Physical Chemistry B, 2003,107: 668-677.

    [25] Chu Y, Schonbrun E, Yang T, et al, Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays[J]. Appl. Phys. Lett. 2008, 93:181108-181112.

    [26] Beruete M, Sorolla M, Navarro-Cía M, et al, Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays[J]. Opt. Express, 2007, 15:1107-1114.

    [27] García-Vidal F J, Moreno E, J Porto J A, et al, Transmission of Light through a Single Rectangular Hole[J]. Phys. Rev. Lett. 2003,95: 103901-103903.

    [28] García de Abajo F J, Light scattering by particle and hole arrays[J], Rev. Mod. Phys. 2007,79:1267-1293.

    [29] Liu X L, Tyler T, Starr T, et al, Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters[J]. PRL, 2011, 107: 045901-045904.

    [30] Chen H T, Interference theory of metamaterial perfect absorbers[J]. OPTICS EXPRESS, 2012. 20:7165-7172.

    [31] Liu X L, Starr T, Anthony F. Starr, et al, Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance[J]. PRL, 2010,104: 207403-207406.

    [32] Hao J M, Zhou L, Qiu M,Nearly total absorption of light and heat generation by plasmonic metamaterials[J]. PHYSICAL REVIEW B, 2011, 83:165107-165118.

    [33] Hu C G, Liu L Y, Zhao Z Y, et al, Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies[J]. OPTICS EXPRESS, 2009. 17:16745-16749.

    [34] Zahyun Ku, Brueck S R J, Experimental demonstration of sidewall angle induced bianisotropy in multiple layer negative index metamaterials[J]. Applied Physics Letters, 2009, 94:153107-153109.

    [35] Zhang N, Zhou P H, Cheng D M, et al, Dual-band absorption of mid-infrared metamaterialabsorber based on distinct dielectric spacing layers[J]. OPTICS LETTERS, 2013. 38: 1125-1127.

    [36] Prakash P, Chong P H, Piotr K, et al, Dual band complementary metamaterial absorber in near infrared region[J]. JOURNAL OF APPLIED PHYSICS, 2014, 115:193109-193114.

    [37] Withawat W, Charan M S, Christophe F, et al, Plasmonic Resonance toward Terahertz Perfect Absorbers[J]. ACS Photonics, 2014, 1: 625-630.

    [38] Ordal M A, Long L L, Bell R J, et al, Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared[J], Appl. Opt. 1983, 22: 1099-119.

    [39] Dodge M J, Refractive properties of magnesium fluoride[J]. Appl. Opt. 1984,23:1980-1985.

    [40] Smith D R, Schultz S, Markos P, et al, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J]. Phys. Rev. B, 2002,65:95104-195110.

    [41] Zhang S, Fan W, Malloy K J, et al, Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies[J]. J. Opt. Soc. Am. B, 2006, 23:434-438.

    [42] Liu N, Martin M, Thomas W, et al, Infrared Perfect Absorber and Its Application As Plasmonic Sensor[J]. Nano Lett. 2010, 10: 2342-2348.

    [43] Hu C G, Liu L Y, Zhao Z Y, et al, Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies[J]. OPTICS EXPRESS,2009, 17:16745-16749.

    [44] James G, Yong M, Saha S, et al, Polarization insensitive, broadband terahertz metamaterial absorber[J]. OPTICS LETTERS, 2011, 36:3476-3478.

    [45] Mary A, Rodrigo S G, Garcia-Vida F G, et al, Theory of negative-refractive-index response of double-fishnet structures[J]. Phys. Rev. Lett. 2008,101:103902-103905.

    [46] Smith D R, Vier D C, Koschny T, et al, Electromagnetic parameter retrieval from inhomogeneous metamaterials[J]. Phys. Rev. E, 2005, 71:036617-036627.

    [47] Jiang Z H, Seokho Y, Lan L, et al, Tailoring Dispersion for Broadband Low-loss Optical Metamaterials Using Deep-subwavelength Inclusions[J]. SCIENTIFIC REPORTS, 2013,3:1571-1579.

    [48] Oughstun, K. E., Shen, S. Dispersive pulse propagation in a double-resonance Lorentz medium[J]. J. Opt. Soc. Am. B, 1988, 5:2395-2398.

    [49] Zhong M, Localized surface plasmon resonnance induced terahertz broad absorption band[J]. Optics Communications, 2015, 356: 607-611.

    [50] Jiang Z H, Seokho Y, Lan L, et al, Tailoring Dispersion for Broadband Low-loss Optical Metamaterials Using Deep-subwavelength Inclusions[J]. SCIENTIFIC REPORTS, 2013, 3:1571-1579.

    [51] Hao J M, Zhou L, Qiu M, Nearly total absorption of light and heat generation by plasmonic metamaterials[J]. PHYSICAL REVIEW B, 2011, 83:165107-165110.

    ZHANG Zhen-Ya, LIU Xiao-Li, WEN Xiao-Dong. Enhance absorption based on the resonance of localized surface plasmon modes in a metamaterial absorber[J]. Journal of Infrared and Millimeter Waves, 2018, 37(5): 533
    Download Citation