• Infrared and Laser Engineering
  • Vol. 50, Issue 7, 20200436 (2021)
Rui Geng, Kang Zhao, and Qingshan Chen
Author Affiliations
  • School of Instrument Science and Optoelectronics Engineering, Beijing Information Science & Technology University, Beijing 100192, China
  • show less
    DOI: 10.3788/IRLA20200436 Cite this Article
    Rui Geng, Kang Zhao, Qingshan Chen. Long-distance recognition of infrared quantum dot materials[J]. Infrared and Laser Engineering, 2021, 50(7): 20200436 Copy Citation Text show less

    Abstract

    Quantum dots are widely used in laser energy, photoelectric detection and other fields due to its unique photoelectric properties. Its size-dependent stimulated emission and flexible application form also make it an ideal fluorescent labeling material, which has attracted much attention in the fields of biomedicine, micromaterial detection, anti-counterfeiting and target recognition. In the field of anti-counterfeiting and target recognition where the application scenes are mostly macro natural environments, it is inevitable to detect and analyze the infrared fluorescence of quantum dots at a relatively long distance. Therefore, a long-distance detection system of infrared fluorescence for quantum dot was established based on weak signal detection technology and used to detect the fluorescence of PbS colloidal quantum dot films. The effective detection range of the fluorescence at 1300 nm for the samples was over 100-200 meters and may increase further. This meant that long-distance recognition of infrared quantum dot materials was realized. The detection results can be used to analyze and guide the preparation process of different infrared quantum dot materials, which will also promote the diversified development of their remote recognition applications.
    Rui Geng, Kang Zhao, Qingshan Chen. Long-distance recognition of infrared quantum dot materials[J]. Infrared and Laser Engineering, 2021, 50(7): 20200436
    Download Citation