• Chinese Journal of Quantum Electronics
  • Vol. 37, Issue 3, 257 (2020)
Jiwu LI1、*, Chun WANG2, Pibing BING3, and Haitao JIANG1、4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 20.001 Cite this Article
    LI Jiwu, WANG Chun, BING Pibing, JIANG Haitao. Study on circular dichroism spectral sensing properties of chiral plasmonic metasurface[J]. Chinese Journal of Quantum Electronics, 2020, 37(3): 257 Copy Citation Text show less
    References

    [1] Oh S H, Altug H. Performance metrics and enabling technologies for nanoplasmonic biosensors[J]. Nature Communications, 2018, 9(1): 5263.

         Oh S H, Altug H. Performance metrics and enabling technologies for nanoplasmonic biosensors[J]. Nature Communications, 2018, 9(1): 5263.

    [2] Yanik A A, Cetin A E, Huang M, et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances[C]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 11784-11789.

         Yanik A A, Cetin A E, Huang M, et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances[C]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 11784-11789.

    [3] Li Na, Tittl A, Song Y, et al. DNA-assembled bimetallic plasmonic nanosensors[J]. Light: Science & Applications, 2014, 3: e226.

         Li Na, Tittl A, Song Y, et al. DNA-assembled bimetallic plasmonic nanosensors[J]. Light: Science & Applications, 2014, 3: e226.

    [4] Urbonas D, Balcytis A, Vakkevicius K, et al. Air and dielectric bands photonics crystal microringresonator for refractive index sensing[J]. Optics Letters, 2016, 41(15): 3655-3658.

         Urbonas D, Balcytis A, Vakkevicius K, et al. Air and dielectric bands photonics crystal microringresonator for refractive index sensing[J]. Optics Letters, 2016, 41(15): 3655-3658.

    [5] Cscelli E, Sozzi M, Poli F, et al. Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 1(4): 967-972.

         Cscelli E, Sozzi M, Poli F, et al. Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 1(4): 967-972.

    [7] Lu Hai, Huang Meng, Kang Xiubao, et al. Improving the sensitivity of compound waveguide grating biosensor via modulated wavevector[J]. Applied Physics Express, 2018, 11(8): 082202.

         Lu Hai, Huang Meng, Kang Xiubao, et al. Improving the sensitivity of compound waveguide grating biosensor via modulated wavevector[J]. Applied Physics Express, 2018, 11(8): 082202.

    [8] Mohammadi E, Tsakmakidis K L, Askarpour A N, et al. Nanophotonic platforms for enhanced chiral sensing[J]. ACS Photonics, 2018, 5(7): 2669-2675.

         Mohammadi E, Tsakmakidis K L, Askarpour A N, et al. Nanophotonic platforms for enhanced chiral sensing[J]. ACS Photonics, 2018, 5(7): 2669-2675.

    [9] Yang N, Tang Y Q, Cohen A E. Spectroscopy in sculpted fields[J]. Nano Today, 2009, 4(3): 269-279.

         Yang N, Tang Y Q, Cohen A E. Spectroscopy in sculpted fields[J]. Nano Today, 2009, 4(3): 269-279.

    [10] Tang Y Q, Cohen A E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light[J]. Science, 2011, 332(6027): 333-336.

         Tang Y Q, Cohen A E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light[J]. Science, 2011, 332(6027): 333-336.

    [11] Govorov A O, Fan Z Y, Hernandez P, et al. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects[J]. Nano Letters, 2010, 10(4): 1374-1382.

         Govorov A O, Fan Z Y, Hernandez P, et al. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects[J]. Nano Letters, 2010, 10(4): 1374-1382.

    [12] Kneer L M, Roller E M, Besteiro L V, et al. Circular dichroism of chiral molecules in DNA-assembled plasmonic hotspots[J]. ACS Nano, 2018, 12(9): 9110-9115.

         Kneer L M, Roller E M, Besteiro L V, et al. Circular dichroism of chiral molecules in DNA-assembled plasmonic hotspots[J]. ACS Nano, 2018, 12(9): 9110-9115.

    [13] Zhang H, Govorov A O. Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals[J]. Physical Review B, 2013, 87(7): 075410.

         Zhang H, Govorov A O. Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals[J]. Physical Review B, 2013, 87(7): 075410.

    [14] Davis T J, Gómez D E. Interaction of localized surface plasmons with chiral molecules[J]. Physical Review B, 2014, 90(23): 235424.

         Davis T J, Gómez D E. Interaction of localized surface plasmons with chiral molecules[J]. Physical Review B, 2014, 90(23): 235424.

    [15] Lu F, Tian Y, Liu M Z, et al. Discrete nano-cubes as plasmonic reporters of molecular chirality[J]. Nano Letters, 2013, 13(7): 3145-3151.

         Lu F, Tian Y, Liu M Z, et al. Discrete nano-cubes as plasmonic reporters of molecular chirality[J]. Nano Letters, 2013, 13(7): 3145-3151.

    [16] Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science and Application, 2014, 3(10): e218.

         Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science and Application, 2014, 3(10): e218.

    [20] Wang B X, Xie Q, Dong G X, et al. Quad-spectral perfect metamaterial absorber at terahertz frequency based on a double-layer stacked resonance structure[J]. Journal of Electronic Materials, 2019, 48(4): 2209-2214.

         Wang B X, Xie Q, Dong G X, et al. Quad-spectral perfect metamaterial absorber at terahertz frequency based on a double-layer stacked resonance structure[J]. Journal of Electronic Materials, 2019, 48(4): 2209-2214.

    [21] Xia L P, Cui H L, Zhang M, et al. Broadband anisotropy in terahertz metamaterial with single-layer gap ring array[J]. Materials, 2019, 12(4): 2255.

         Xia L P, Cui H L, Zhang M, et al. Broadband anisotropy in terahertz metamaterial with single-layer gap ring array[J]. Materials, 2019, 12(4): 2255.

    [22] Xia L P, Zhang X, Zhang M, et al. Deep electrical modulation of terahertz wave based on hybrid metamaterial-dielectric-graphene structure[J]. Applied Sciences (Switzerland), 2019, 9(3): 507.

         Xia L P, Zhang X, Zhang M, et al. Deep electrical modulation of terahertz wave based on hybrid metamaterial-dielectric-graphene structure[J]. Applied Sciences (Switzerland), 2019, 9(3): 507.

    [23] Zhao J, Cheng Q, Wang X K, et al. Controlling the bandwidth of terahertz low-scattering metasurfaces[J]. Advanced Optical Materials, 2016, 4(11): 1773-1779.

         Zhao J, Cheng Q, Wang X K, et al. Controlling the bandwidth of terahertz low-scattering metasurfaces[J]. Advanced Optical Materials, 2016, 4(11): 1773-1779.

    [24] Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947): 1513-1515.

         Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947): 1513-1515.

    [25] Decker M, Ruther M, Kriegler C E, et al. Strong optical activity from twisted-cross photonic metamaterials[J]. Optics Letters, 2009, 34(16): 2501-2503.

         Decker M, Ruther M, Kriegler C E, et al. Strong optical activity from twisted-cross photonic metamaterials[J]. Optics Letters, 2009, 34(16): 2501-2503.

    [26] Zhao Y, Belkin M A, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizes[J]. Nature Communications, 2012, 3: 870.

         Zhao Y, Belkin M A, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizes[J]. Nature Communications, 2012, 3: 870.

    [27] Yan X, Yang M S, Zhang Z, et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors and Bioelectronics, 2019, 126: 485-492.

         Yan X, Yang M S, Zhang Z, et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors and Bioelectronics, 2019, 126: 485-492.

    [28] Ordal M A, Long L L, Bell R J, et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared[J]. Applied Optics, 1983, 22(7): 1099-1119.

         Ordal M A, Long L L, Bell R J, et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared[J]. Applied Optics, 1983, 22(7): 1099-1119.

    CLP Journals

    [1] WU Renglai, YU Yabin, XIAO Shifa, QUAN Jun. Correction of plasmon dispersion relation due to thickness of monolayer-atom system[J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 541

    LI Jiwu, WANG Chun, BING Pibing, JIANG Haitao. Study on circular dichroism spectral sensing properties of chiral plasmonic metasurface[J]. Chinese Journal of Quantum Electronics, 2020, 37(3): 257
    Download Citation