• Matter and Radiation at Extremes
  • Vol. 6, Issue 3, 035902 (2021)
Peng Wang1、2、*, Chen Zhang1, Shaoen Jiang1, Xiaoxi Duan1, Huan Zhang1, LiLing Li1, Weiming Yang1, Yonggang Liu1, Yulong Li1, Liang Sun1, Hao Liu1, and Zhebin Wang1
Author Affiliations
  • 1Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
  • 2Department of Plasma Physics and Fusion Engineering, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.1063/5.0039062 Cite this Article
    Peng Wang, Chen Zhang, Shaoen Jiang, Xiaoxi Duan, Huan Zhang, LiLing Li, Weiming Yang, Yonggang Liu, Yulong Li, Liang Sun, Hao Liu, Zhebin Wang. Density-dependent shock Hugoniot of polycrystalline diamond at pressures relevant to ICF[J]. Matter and Radiation at Extremes, 2021, 6(3): 035902 Copy Citation Text show less
    References

    [1] J.Lindl. Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933(1995).

    [2] E.Moses, J.Edwards, O.Landen, J.Lindl. Review of the National Ignition Campaign 2009-2012. Phys. Plasmas, 21, 020501(2014).

    [3] S. H.Batha, D.Bennett, J. L.Kline, S.Bhandarkar, L. R.Benedetti et al. Progress of indirect drive inertial confinement fusion in the United States. Nucl. Fusion, 59, 112018(2019).

    [4] S.Le Pape, A. J.MacKinnon, J. S.Ross, L.Berzak Hopkins, N. B.Meezan et al. High-density carbon ablator experiments on the National Ignition Facility. Phys. Plasmas, 21, 056318(2014).

    [5] L. F.Berzak Hopkins, N. B.Meezan, A. J.MacKinnon, L.Divol, S.Le Pape et al. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums. Phys. Plasmas, 22, 062703(2015).

    [6] P.Amendt, O. S.Jones, D. D.Ho. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum. Phys. Plasmas, 22, 040703(2015).

    [7] M. J.Edwards, L. J.Atherton, S. H.Glenzer, J. D.Lindl, P. K.Patel et al. Progress towards ignition on the National Ignition Facility. Phys. Plasmas, 20, 070501(2013).

    [8] C.Cerjan, D. T.Casey, P. M.Celliers, D. A.Callahan, O. A.Hurricane et al. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343(2014).

    [9] T. R.Dittrich, E. L.Dewald, D. A.Callahan, O. A.Hurricane, D. T.Casey et al. The high-foot implosion campaign on the National Ignition Facility. Phys. Plasmas, 21, 056314(2014).

    [10] R. E.Olson, S. A.Yi, J. L.Kline, D. C.Wilson, A. N.Simakov et al. First beryllium capsule implosions on the National Ignition Facility. Phys. Plasmas, 23, 056310(2016).

    [11] G. A.Kyrala, A.Simakov, S. A.Yi, E. N.Loomis, J.Kline et al. Implosion shape control of high-velocity, large case-to-capsule ratio beryllium ablators at the National Ignition Facility. Phys. Plasmas, 25, 072708(2018).

    [12] J. E.Ralph, G.Kyrala, S. A.Yi, A. B.Zylstra, S.MacLaren et al. Beryllium implosions at smaller case-to-capsule ratio on NIF. High Energy Density Phys., 34, 100747(2020).

    [13] E. L.Dewald, A.Pak, L. F.Berzak Hopkins, L.Divol, S.Le Pape et al. Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility. Phys. Rev. Lett., 120, 245003(2018).

    [14] L.Divol, E.Dewald, A.Pak, S.LePape, L. B.Hopkins et al. Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF). Plasma Phys. Control. Fusion, 61, 014023(2019).

    [15] D. A.Callahan, M. J.Edwards, P. T.Springer, P.Patel, O. A.Hurricane et al. Beyond alpha-heating: Driving inertially confined fusion implosions toward a burning-plasma state on the National Ignition Facility. Plasma Phys. Control. Fusion, 61, 014033(2019).

    [16] S. J.Ali, S.Haan, N.Whiting, T. R.Boehly, P. M.Celliers et al. Probing the seeding of hydrodynamic instabilities from nonuniformities in ablator materials using 2D velocimetry. Phys. Plasmas, 25, 092708(2018).

    [17] J. D.Salmonson, D. D.-M.Ho, J. D.Lindl, S. W.Haan, D. S.Clark et al. Implosion configurations for robust ignition using high density carbon NIF. J. Phys.: Conf. Ser., 717, 012023(2016).

    [18] B. K.Spears, C. A.Thomas, D. T.Casey, S.Khan, K. L.Baker et al. High-performance indirect-drive cryogenic implosions at high adiabat on the National Ignition Facility. Phys. Rev. Lett., 121, 135001(2018).

    [19] M.Hohenberger, B. K.Spears, D. T.Casey, K. L.Baker, C. A.Thomas et al. The high velocity, high adiabat, “Bigfoot” campaign and tests of indirect-drive implosion scaling. Phys. Plasmas, 25, 056308(2018).

    [20] O. L.Landen, S. W.Haan, R.Betti, J. D.Lindl, A. R.Christopherson. Progress toward a self-consistent set of 1D ignition capsule metrics in ICF. Phys. Plasmas, 25, 122704(2018).

    [21] P. B.Mirkarimi, J. W.Tringe, J.Biener, S. L.Baker, Y.Wang et al. Diamond ablators for inertial confinement fusion. Fusion Sci. Technol., 49, 737(2006).

    [22] C.Wild, D. D.Ho, J.Biener, E.Woerner, M. M.Biener et al. Diamond spheres for inertial confinement fusion. Nucl. Fusion, 49, 112001(2009).

    [23] S. J.Shin, M.Bagge-Hansen, T. M.Willey, C.Dawedeit, S. O.Kucheyev et al. Grain size dependent physical and chemical properties of thick CVD diamond films for high energy density physics experiments. Diamond Relat. Mater., 40, 75(2013).

    [24] D. G.Hicks, P. M.Celliers, J. H.Eggert, D. K.Bradley, S. J.Moon et al. Shock compressing diamond to a conducting fluid. Phys. Rev. Lett., 93, 195506(2004).

    [25] T. R.Boehly, D. G.Hicks, J. H.Eggert, P. M.Celliers, D. K.Bradley et al. High-precision measurements of the diamond Hugoniot in and above the melt region. Phys. Rev. B, 78, 843317(2008).

    [26] J. H.Eggert, P. M.Celliers, R. S.McWilliams, D. G.Hicks, D. K.Bradley et al. Melting temperature of diamond at ultrahigh pressure. Nat. Phys., 6, 40(2009).

    [27] N.Kamimura, K.Miyanishi, N.Ozaki, Y.Umeda, K.Katagiri et al. Optical properties of shock-compressed diamond up to 550 GPa. Phys. Rev. B, 101, 184106(2020).

    [28] K. G.Nakamura, K.Kondo, H.Nagao, N.Ozaki, K.Takamatsu et al. Hugoniot measurement of diamond under laser shock compression up to 2 TPa. Phys. Plasmas, 13, 052705(2006).

    [29] E.Henry, J.Eggert, M.Koenig, P.Loubeyre, S.Brygoo et al. Laser-shock compression of diamond and evidence of a negative-slope melting curve. Nat. Mater., 6, 274(2007).

    [30] W. D.Mattson, N. A.Romero. Density-functional calculation of the shock Hugoniot for diamond. Phys. Rev. B, 76, 214113(2007).

    [31] E.Schwegler, S. A.Bonev, D. A.Young, A. A.Correa, L. X.Benedict. First-principles multiphase equation of state of carbon under extreme conditions. Phys. Rev. B, 78, 024101(2008).

    [32] M. P.Desjarlais, D. H.Dolan, M. D.Knudson. Shock-wave exploration of the high-pressure phases of carbon. Science, 322, 1822(2008).

    [33] N.Ozaki, K.Katagiri, Y.Umeda, T.Irifune, N.Kamimura et al. Shock response of full density nanopolycrystalline diamond. Phys. Rev. Lett., 125(2020).

    [34] D. N.Polsin, A.Sorce, C. A.McCoy, D. E.Fratanduono, M. C.Gregor et al. Hugoniot and release measurements in diamond shocked up to 26 Mbar. Phys. Rev. B, 95, 144114(2017).

    [35] M. C.Gregor. The shock and release behaviors of diamond at terapascal pressures. Ph.D. dissertation(2017).

    [36] X. H.Jiang, R. Q.Yi, S. W.Li, Y. L.Chui, X. A.He et al. Experimental study of radiation temperature for gold hohlraum heated with 1 ns, 0.35 μm lasers on SG-Ⅲ prototype laser facility. Acta Phys. Sin., 58, 3255(2009).

    [37] N. J.Hartley, X.Duan, L. G.Huang, S.Jiang, C.Zhang et al. Dynamically pre-compressed hydrocarbons studied by self-impedance mismatch. Matter Radiat. Extremes, 5, 028401(2020).

    [38] Q.Xu, R.Zhang, P.Ma, C.Yang. Continuous phase plate for laser beam smoothing. Appl. Opt., 47, 1465(2008).

    [39] H.Zhang, X.Jiang, L.Kuang, S.Li, Z.Wang et al. Passive measurement of radiation driven shock velocity. High Power Laser Particle Beams, 25, 375(2013).

    [40] Y.Ding, F.Wang, J.Yang, S.Liu, S.Jiang et al. Recent diagnostic developments at the 100 kJ-level laser facility in China. Matter Radiat. Extremes, 5, 035201(2020).

    [41] J. H.Eggert, D. G.Hicks, G. W.Collins, P. M.Celliers. Systematic uncertainties in shock-wave impedance-match analysis and the high-pressure equation of state of Al. J. Appl. Phys., 98, 113529(2005).

    [42] C. A.Hall, C.Deeney, M. D.Knudson, D. B.Hayes, R. W.Lemke et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique. J. Appl. Phys., 94, 4420(2003).

    [43] D. E.Fratanduono, D. H.Munro, P. M.Celliers, G. W.Collins. Hugoniot experiments with unsteady waves. J. Appl. Phys., 116, 033517(2014).

    [44] X.Duan, C.Zhang, L.Sun, Z.Wang, Q.Ye et al. A method for impedance-match experiments with unsteady shock loading.

    [45] L.Sun, S.Jiang, Z.Wang, X.Duan, W.Liu et al. Laser-driven shock compression of gold foam in the terapascal pressure range. Phys. Plasmas, 25, 062707(2018).

    [46] J. D.Johnson, S. P.Lyon. SESAME: The Los Alamos National Laboratory equation of state database. Los Alamos National Laboratory Technical Report No. LA-UR-92-3407(1992).

    [47] P. M.Celliers, A. A.Correa, M.Millot, L. X.Benedict, P. A.Sterne et al. Measuring the shock impedance mismatch between high-density carbon and deuterium at the National Ignition Facility. Phys. Rev. B, 97, 144108(2018).

    [48] M. C.Marshall, A. E.Lazicki, D. E.Fratanduono, R. A.London, D.Erskine et al. Developing quartz and molybdenum as impedance-matching standards in the 100-Mbar regime. Phys. Rev. B, 99, 174101(2019).

    [49] Q.Wu, F.Jing. Unified thermodynamic equation-of-state for porous materials in a wide pressure range. Appl. Phys. Lett., 67, 49(1995).

    [50] F.Jing, Q.Wu. Thermodynamic equation of state and application to Hugoniot predictions for porous materials. J. Appl. Phys., 80, 4343(1996).

    [51] J. N.Fritz, R.Kinslow, R. G.McQueen, W. J.Carter, S. P.Marsh, J. W.Taylor. in High-Velocity Impact Phenomena(1970).

    [52] K.Nagayama. Formulation of the Rice-Walsh equation of state based on shock Hugoniot data for porous metals. J. Appl. Phys., 119, 195901(2016).

    [53] O. L.Anderson. The Grüneisen ratio for the last 30 years. Geophys. J. Int., 143, 279(2000).

    Peng Wang, Chen Zhang, Shaoen Jiang, Xiaoxi Duan, Huan Zhang, LiLing Li, Weiming Yang, Yonggang Liu, Yulong Li, Liang Sun, Hao Liu, Zhebin Wang. Density-dependent shock Hugoniot of polycrystalline diamond at pressures relevant to ICF[J]. Matter and Radiation at Extremes, 2021, 6(3): 035902
    Download Citation