[1] Zhou P, Leng J Y, Xiao H et al. High average power fiber lasers: research progress and future prospect[J]. Chinese Journal of Lasers, 48, 2000001(2021).
[2] Chen X L, He Y, Xu Z W et al. Theoretical and experimental investigation of a 10-kW high-efficiency 1070-nm fiber amplifier[J]. Chinese Journal of Lasers, 47, 1006001(2020).
[3] Zhang H W, Wang X L, Yang B L et al. All-fiber laser oscillator with output power exceeding 3 kW[J]. Chinese Journal of Lasers, 44, 0415001(2017).
[4] Xu Y, Fang Q, Xie Z X et al. Single fiber quasi-single mode 2 kW all-fiber laser oscillator based on single-end 915 nm semiconductor laser forward-pumping[J]. Chinese Journal of Lasers, 45, 0401003(2018).
[5] Ackermann M, Rehmann G, Lange R et al. Extraction of more than 10 kW from a single ytterbium-doped MM-fiber[J]. Proceedings of SPIE, 10897, 1089717(2019).
[6] Wang Y, Kitahara R, Kiyoyama W et al. 8-kW single-stage all-fiber Yb-doped fiber laser with a BPP of 0.50 mm-mrad[J]. Proceedings of SPIE, 11260, 1126022(2020).
[7] Yang B L, Wang P, Zhang H W et al. 6 kW single mode monolithic fiber laser enabled by effective mitigation of the transverse mode instability[J]. Optics Express, 29, 26366-26374(2021).
[8] Xi X M, Wang P, Yang B L et al. The output power of all-fiber laser oscillator breaks through 7 kW[J]. Chinese Journal of Lasers, 48, 0116001(2021).
[9] Jovanovic N, Aslund M, Fuerbach A et al. Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core[J]. Optics Letters, 32, 2804-2806(2007).
[10] Krämer R G, Liem A, Voigtländer C et al. 514 W monolithic fiber laser with a femtosecond inscribed fiber Bragg grating[C], CJ_1_3(2013).
[11] Bharathan G, Woodward R I, Ams M et al. Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers[J]. Optics Express, 25, 30013-30019(2017).
[12] Fortin V, Jobin F, Larose M et al. 10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm[J]. Optics Letters, 44, 491-494(2019).
[13] Krämer R G, Matzdorf C, Liem A et al. Femtosecond written fiber Bragg gratings in ytterbium-doped fibers for fiber lasers in the kilowatt regime[J]. Optics Letters, 44, 723-726(2019).
[14] Theodosiou A, Aubrecht J, Kašík I et al. Femtosecond laser plane-by-plane inscribed cavity mirrors for monolithic fiber lasers in thulium-doped fiber[J]. Sensors, 21, 1928(2021).
[15] Huang Z N, Huang Q Q, Theodosiou A et al. Femtosecond laser direct inscribed 45° tilted fiber grating for a net-normal-dispersion mode-locked Er-doped fiber laser[J]. Optics & Laser Technology, 143, 107358(2021).
[16] Klein S, Giesberts M, Baer P et al. Fiber Bragg gratings in active multimode XLMA fibers for high-power kW-class fiber lasers[J]. Proceedings of SPIE, 11260, 1126025(2020).
[17] Dong F L, Ge T W, Zhang X X et al. 300 W all-fiber amplifier with distributed side-coupled pump configuration[J]. Acta Physica Sinica, 64, 084205(2015).
[18] Dong F L, Zhang X H, Song F. Side coupler applied in a multi-pumped Yb-doped triple-clad fiber laser[J]. Laser Physics, 28, 125106(2018).
[19] Krämer R G, Möller F, Matzdorf C et al. Extremely robust femtosecond written fiber Bragg gratings for an ytterbium-doped fiber oscillator with 5 kW output power[J]. Optics Letters, 45, 1447-1450(2020).
[20] Tang Y L, Yu X C, Li X H et al. High-power thulium fiber laser Q switched with single-layer graphene[J]. Optics Letters, 39, 614-617(2014).
[21] Li X H, Yu X C, Sun Z P et al. High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction[J]. Scientific Reports, 5, 16624(2015).