• Laser & Optoelectronics Progress
  • Vol. 54, Issue 2, 22702 (2017)
Luo Junwen*, Li Yunxia, Shi Lei, Meng Wen, Xu Zhenyu, and Xue Yang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.022702 Cite this Article Set citation alerts
    Luo Junwen, Li Yunxia, Shi Lei, Meng Wen, Xu Zhenyu, Xue Yang. Co-Fiber-Transmission Technology for Quantum Signal and Classical Optical Signal Based on Mode Division Multiplexing in Few-Mode Fiber[J]. Laser & Optoelectronics Progress, 2017, 54(2): 22702 Copy Citation Text show less
    References

    [1] Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing[J]. Theoretical Computer Science, 2014, 560: 7-11.

    [2] Bennett C H. Quantum cryptography using any two non-orthogonal states[J]. Physical Review Letters, 1992, 68(21): 3121-3124.

    [3] Ekert A K. Quantum cryptography based on Bell′s theorem[J]. Physical Review Letters, 1991, 67(6): 661-663.

    [4] Ralph T C. Continuous variable quantum cryptography[J]. Physical Review A, 1999, 61(1): 010303.

    [5] Lo H K, Chau H F, Ardehali M. Efficient quantum key distribution scheme and a proof of its unconditional security[J]. Journal of Cryptology, 2005, 18(2): 133-165.

    [6] Li Ruixue, Ma Haiqiang, Wei Kejin, et al. Polarization-insensitive phase modulation in fiber quantum key distribution system[J]. Laser & Optoelectronics Progress, 2016, 53(4): 040601.

    [7] Cai X Q, Niu H F. Quantum private communication with an anonymous sender[J]. International Journal of Theoretical Physics, 2013, 52(2): 411-419.

    [8] Liu W Q, Peng J Y, Wang C, et al. Hybrid quantum private communication with continuous-variable and discrete-variable signals[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(2): 020301.

    [9] Baumeler A, Broadbent A. Quantum private information retrieval has linear communication complexity[J]. Journal of Cryptology, 2015, 28(1): 161-175.

    [10] Aleksic S, Winkler D, Poppe A, et al. Distribution of quantum keys in optically transparent networks: Perspectives, limitations and challenges[C]. 15th International Conference on Transparent Optical Networks, 2013: 13779014.

    [11] Qi B, Zhu W, Qian L, et al. Feasibility of quantum key distribution through a dense wavelength division multiplexing network[J]. New Journal of Physics, 2010, 12(10): 103042.

    [12] Peters N A, Toliver P, Chapuran T E, et al. Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments[J]. New Journal of Physics, 2009, 11(4): 045012.

    [13] Essiambre R J, Kramer G, Winzer P J, et al. Capacity limits of optical fiber networks[J]. Journal of Lightwave Technology, 2010, 28(4): 662-701.

    [14] Essiambre R, Mecozzi A. Capacity limits in single mode fiber and scaling for spatial multiplexing[C]. Optical Fiber Communication Conference, Optical Society of America, 2012: OW3D.1.

    [15] Liu Lingling, Jing Mingyong, Yu Bo, et al. Polarization control in single photons phase coding quantum key distribution system[J]. Laser & Optoelectronics Progress, 2015, 52(7): 072701.

    [16] Townsend P D. Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing[J]. Electronics Letters, 1997, 33(3): 188-190.

    [17] Nweke N I, Toliver P, Runser R J, et al. Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels[J]. Applied Physics Letters, 2005, 87(17): 174103.

    [18] Chapuran T E, Toliver P, Peters N A, et al. Optical networking for quantum key distribution and quantum communications[J]. New Journal of Physics, 2009, 11(10): 105001.

    [19] Choi I, Young R J, Townsend P D. Quantum information to the home[J]. New Journal of Physics, 2011, 13(6): 063039.

    [20] Xia T J, Chen D Z, Wellbrock G, et al. In-band quantum key distribution (QKD) on fiber populated by high-speed classical data channels[C]. Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, 2006: OTuJ7.

    [21] Eraerds P, Walenta N, Legré M, et al. Quantum key distribution and 1 Gbps data encryption over a single fibre[J]. New Journal of Physics, 2010, 12(6): 063027.

    [22] Patel K A, Dynes J F, Choi I, et al. Coexistence of high-bit-rate quantum key distribution and data on optical fiber[J]. Physical Review X, 2012, 2(4): 041010.

    [23] Patel K A, Dynes J F, Lucamarini M, et al. Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks[J]. Applied Physics Letters, 2014, 104(5): 051123.

    [24] Liu Youming, Wang Chao, Huang Duan, et al. Study of synchronous technology in high-speed continuous variable quantum key distribution system[J]. Acta Optica Sinica, 2015, 35(1): 0106006.

    [25] Kumar R, Qin H, Alléaume R. Coexistence of continuous variable QKD with intense DWDM classical channels[J]. New Journal of Physics, 2015, 17(4): 043027.

    [26] Wang C, Huang D, Huang P, et al. 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel[J]. Scientific Reports, 2015, 5(65): 33-40.

    [27] Huang D, Lin D, Wang C, et al. Continuous-variable quantum key distribution with 1 Mbps secure key rate[J]. Optics Express, 2015, 23(13): 17511-17519.

    [28] Liu Weiqi. Hybrid quantum private communication with continuous-variable and discrete-variable signals[D]. Xi′an: Northwest University, 2014.

    [29] Berdagué S, Facq P. Mode division multiplexing in optical fibers[J]. Applied Optics, 1982, 21(11): 1950-1955.

    [30] Yaman F, Bai N, Zhu B, et al. Long distance transmission in few-mode fibers[J]. Optics Express, 2010, 18(12): 13250-13257.

    [31] Randel S, Ryf R, Gnauck A, et al. Mode-multiplexed 6×20-GBd QPSK transmission over 1200-km DGD-compensated few-mode fiber[C]. Optical Fiber Communication Conference, 2012: PDP5C.5.

    [32] Ip E, Bai N, Huang Y K, et al. 88×3×112-Gb/s WDM transmission over 50-km of three-mode fiber with inline multimode fiber amplifier[C]. 37th European Conference and Exposition on Optical Communications, 2011: Th.13.C.2.

    [33] Shah A R, Hsu R C J, Tarighat A, et al. Coherent optical mimo (COMIMO)[J]. Journal of Lightwave Technology, 2005, 23(8): 2410-2419.

    [34] Juarez A A, Bunge C A, Warm S, et al. Perspectives of principal mode transmission in mode-division-multiplex operation[J]. Optics Express, 2012, 20(13): 13810-13824.

    [35] Yao Shuchang, Fu Songnian, Zhang Minming, et al. Demodulation and multi-input multi-output equalization for mode division multiplexing system using a novel few-mode fiber[J]. Acta Physica Sinica, 2013, 62(14): 253-260.

    Luo Junwen, Li Yunxia, Shi Lei, Meng Wen, Xu Zhenyu, Xue Yang. Co-Fiber-Transmission Technology for Quantum Signal and Classical Optical Signal Based on Mode Division Multiplexing in Few-Mode Fiber[J]. Laser & Optoelectronics Progress, 2017, 54(2): 22702
    Download Citation