• Advanced Photonics Nexus
  • Vol. 4, Issue 2, 026003 (2025)
Ruoyan Ma1,2, Zhimin Guo1,2,3, Dai Chen3, Xiaojun Dai1,2..., You Xiao1,2, Chengjun Zhang3, Jiamin Xiong1,2, Jia Huang1,2, Xingyu Zhang1,2, Xiaoyu Liu1,2, Liangliang Rong1,2,4, Hao Li1,2,4, Xiaofu Zhang1,2,4,* and Lixing You1,2,4,*|Show fewer author(s)
Author Affiliations
  • 1Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information Technology, National Key Laboratory of Materials for Integrated Circuits, Shanghai, China
  • 2Shanghai Key Laboratory of Superconductor Integrated Circuit Technologies, Shanghai, China
  • 3Photon Technology, Jiashan, China
  • 4University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, China
  • show less
    DOI: 10.1117/1.APN.4.2.026003 Cite this Article Set citation alerts
    Ruoyan Ma, Zhimin Guo, Dai Chen, Xiaojun Dai, You Xiao, Chengjun Zhang, Jiamin Xiong, Jia Huang, Xingyu Zhang, Xiaoyu Liu, Liangliang Rong, Hao Li, Xiaofu Zhang, Lixing You, "Drone-based superconducting nanowire single-photon detection system with a detection efficiency of more than 90%," Adv. Photon. Nexus 4, 026003 (2025) Copy Citation Text show less
    References

    [1] G. N. Gol’tsman et al. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett., 79, 705(2001).

    [2] F. Marsili et al. Detecting single infrared photons with 93% system efficiency. Nat. Photonics, 7, 210(2013).

    [3] D. Reddy et al. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica, 7, 1649(2020).

    [4] P. Hu et al. Detecting single infrared photons toward optimal system detection efficiency. Opt. Express, 28, 36884(2020).

    [5] J. Chang et al. Detecting telecom single photons with (99.5 + 0.5 − 2.07)% system detection efficiency and high time resolution. APL Photonics, 6, 036114(2021).

    [6] L. Chen et al. The Sommerfeld ground-wave limit for a molecule adsorbed at a surface. Science, 363, 158(2018).

    [7] F. Xia et al. Short-wave infrared confocal fluorescence imaging of deep mouse brain with a superconducting nanowire single-photon detector. ACS Photonics, 8, 2800(2021).

    [8] F. Wang et al. In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors. Nat. Nanotechnol., 17, 653(2022).

    [9] Y. Liu et al. Experimental twin-field quantum key distribution over 1000 km fiber distance. Phys. Rev. Lett., 130, 210801(2023).

    [10] Y. Deng et al. Solving graph problems using Gaussian boson sampling. Phys. Rev. Lett., 130, 190601(2023).

    [11] V. Kotsubo et al. Compact 2.2 K cooling system for superconducting nanowire single photon detectors. IEEE Trans. Appl. Supercond., 27, 1(2017).

    [12] N. R. Gemmell et al. A miniaturized 4 K platform for superconducting infrared photon counting detectors. Supercond. Sci. Technol., 30, 11LT01(2017).

    [13] L. X. You et al. Superconducting nanowire single photon detection system for space applications. Opt. Express, 26, 2965(2018).

    [14] L. X. You. Miniaturizing superconducting nanowire single-photon detection systems. Supercond. Sci. Technol., 31, 040503(2018).

    [15] X. Zhang et al. Mobile superconducting strip photon detection system with efficiency over 70% at a 1550 nm wavelength. Opt. Express, 31, 30650(2023).

    [16] D. M. Boroson, B. S. Robinson. The Lunar Laser Communication Demonstration: NASA’s first step toward very high data rate support of science and exploration missions. Space Sci. Rev., 185, 115(2014).

    [17] D. M. Boroson et al. Overview and results of the Lunar Laser Communication Demonstration. Proc. SPIE, 8971, 89710S(2014).

    [18] J. W. Qiu et al. Micro-pulse polarization lidar at 1.5 μm using a single superconducting nanowire single photon detector. Opt. Lett., 42, 4454-4457(2017).

    [19] H. Y. Liu et al. Optical-relayed entanglement distribution using drones as mobile nodes. Phys. Rev. Lett., 126, 020503(2021).

    [20] R. H. Hadfield et al. Single-photon detection for long-range imaging and sensing. Optica, 10, 1124(2023).

    [21] H. Zhou et al. Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector. Opt. Express, 23, 14603(2015).

    [22] M. Shangguan et al. Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector. Opt. Lett., 42, 3541(2017).

    [23] Y. Hong et al. Airborne single-photon lidar towards a small-sized and low-power payload. Optica, 11, 612(2024).

    [24] D. M. Boroson, B. S. Robinson. Status of the Lunar Laser Communication Demonstration. Proc. SPIE, 8610, 861002(2013).

    [25] W. Weiren et al. Overview of deep space laser communication. Sci. China Inf., 61, 7(2018).

    [26] H. Hao et al. A compact multi-pixel superconducting nanowire single-photon detector array supporting gigabit space-to-ground communications. Light Sci. Appl., 13, 25(2024).

    [27] T. Zhang et al. 32 × 32 NbN SNSPD array based on thermally coupled row-column multiplexing architecture. Superconductivity, 7, 100056(2023).

    [28] E. E. Wollman et al. An SNSPD-based detector system for NASA’s Deep Space Optical Communications project. Opt. Express, 32, 48185(2024).

    [29] M. Srinivasan et al. The Deep Space Optical Communications project ground laser transmitter. Proc. SPIE, 12413, 124130Q(2023).

    [30] X. Zhang et al. Characteristics of superconducting tungsten silicide WxSi1x for single photon detection. Phys. Rev. B, 94, 174509(2016). https://doi.org/10.1103/PhysRevB.94.174509

    [31] X. Zhang et al. Superconducting fluctuations and characteristic time scales in amorphous WSi. Phys. Rev. B, 97, 174502(2018).

    [32] D. Yu. Vodolazov. Single-photon detection by a dirty current-carrying superconducting strip based on the kinetic-equation approach. Phys. Rev. Appl., 7, 034014(2017).

    [33] R. Cheng et al. Epitaxial niobium nitride superconducting nanowire single-photon detectors. Appl. Phys. Lett., 117, 132601(2020).

    [34] F. Marsili et al. Single-photon detectors based on ultranarrow superconducting nanowires. Nano Lett., 11, 2048(2011).

    [35] R. Ma et al. Disorder enhanced relative intrinsic detection efficiency in NbTiN superconducting nanowire single-photon detectors at high temperature. Appl. Phys. Lett., 124, 072601(2024).

    [36] V. F. Gantmakher, V. T. Dolgopolov. Superconductor-insulator quantum phase transition. Phys. Usp., 53, 1(2010).

    [37] R. Ma et al. Single photon detection performance of highly disordered NbTiN thin films. J. Phys. Commun., 7, 055006(2023).

    [38] Y. Jiang et al. Superconducting nanostrip single photon detectors fabricated of aluminum thin films. Superconductivity, 10, 100096(2024).

    [39] W. Zhang et al. NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature. Sci. China Phys. Mech. Astron., 60, 120314(2017).

    [40] J. R. Clem, K. K. Berggren. Geometry-dependent critical currents in superconducting nanocircuits. Phys. Rev. B, 84, 174510(2011).

    [41] D. Henrich et al. Geometry-induced reduction of the critical current in superconducting nanowires. Phys. Rev. B, 86, 144504(2012).

    [42] W. J. Skocpol, M. Tinkham. Fluctuations near superconducting phase transitions. Rep. Prog. Phys., 38, 1049(1975).

    [43] R. Gourgues et al. Superconducting nanowire single photon detectors operating at temperature from 4 to 7 K. Opt. Express, 27, 24601(2019).

    [44] G. L. He et al. Miniaturized superconducting single-photon detection system for airborne platform. Acta Phys. Sin., 72, 098501(2023).

    [45] W. J. Zhang et al. Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face. Supercond. Sci. Technol., 31, 035012(2018).

    Ruoyan Ma, Zhimin Guo, Dai Chen, Xiaojun Dai, You Xiao, Chengjun Zhang, Jiamin Xiong, Jia Huang, Xingyu Zhang, Xiaoyu Liu, Liangliang Rong, Hao Li, Xiaofu Zhang, Lixing You, "Drone-based superconducting nanowire single-photon detection system with a detection efficiency of more than 90%," Adv. Photon. Nexus 4, 026003 (2025)
    Download Citation