• Laser & Optoelectronics Progress
  • Vol. 52, Issue 7, 70001 (2015)
Bai Shuai1、2、*, Wang Jianyu1, Zhang Liang1, and Yang Mingdong1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop52.070001 Cite this Article Set citation alerts
    Bai Shuai, Wang Jianyu, Zhang Liang, Yang Mingdong. Development Progress and Trends of Space Optical Communications[J]. Laser & Optoelectronics Progress, 2015, 52(7): 70001 Copy Citation Text show less
    References

    [1] NASA.‘Hello, World!’NASA Beams Video from Space Station via Laser[EB/OL]. (2014-06-06). [2015-03-19]. http://www.nasa.gov/mission_pages/station/research/news/opals_beams_video.

    [2] Liu Liren. Laser communications in space Ι optical link and terminal technology[J]. Chinese J Lasers, 2007, 34(1): 3-20.

    [3] Karp S, O′ neill E L, Gagliardi R M. Communication theory for the free-space optical channel[J]. Proceedings of the IEEE, 1970, 58(10): 1611-1626.

    [4] Barry J D, Mecherle G S. Beam pointing error as a significant design parameter for satellite-borne, free-space optical communication-systems[J]. Opt Eng, 1985, 24(6): 1049-1054.

    [5] Ebben T H, Marshalek R G, Smith R J, et al.. Experimental performance of an acquisition subsystem for free-space laser communication[C]. SPIE, 1989, 1059: 120-136.

    [6] Lindgren N. Optical communications -A decade of preparations[J]. Proceedings of the IEEE, 1970, 58(10): 1410-1418.

    [7] Nakagawa K, Yamamoto A, Toyoda M. Performance test result of LUCE (laser utilizing communications equipment) engineering model[C]. SPIE, 2000, 3932: 68-76.

    [8] Cosson F, Doubrere P, Perez E. Simulation-model and on-ground performances validation of the pat system for SILEX program[C]. SPIE, 1991, 1417: 262-276.

    [9] Sodnik Z, Furch B, Lutz H. The ESA optical ground station -ten years since first light[J]. ESA Bulletin-European Space Agency, 2007, (132): 34-40.

    [10] Oppenhauser G. SILEX program status -A major milestone is reached[C]. SPIE, 1997, 2990: 2-9.

    [11] Tolker-Nielsen T, Oppenhaeuser G. In orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX[C]. SPIE, 2002, 4635: 1-15.

    [12] Sodnik Z, Furch B, Lutz H. Free-space laser communication activities in europe: SILEX and beyond[C]. IEEE Lasers and Electro-Optics Society (LEOS), 2006: 78-79.

    [13] Jono T, Takayama Y, Kura N, et al.. OICETS on-orbit laser communication experiments[C]. SPIE, 2006, 6105: 610503.

    [14] Cazaubiel V, Planche G, Chorvalli V, et al.. LOLA: A 40000 km optical link between an aircraft and a geostationary satellite[C]. 6th International Conference on Space Optics, 2006: 27-30.

    [15] Gunter′s Space Page. Artemis[EB/OL]. (2014-05-04). [2015-03-19]. http://space.skyrocket.de/doc_sdat/artemis.htm.

    [16] Nielsen T T. Pointing, Acquisition and tracking system for the free space laser communication system, SILEX[C]. SPIE, 1995, 2381: 194-205.

    [17] Tong Shoufeng, Jiang Huilin, Zhang Lizhong. High date-rate space laser communication system and its application[J]. Infrared and Laser Engineering, 2010, 39(4): 649-654.

    [18] Gregory M, Heine F, Kampfner H, et al.. Coherent inter-satellite and satellite-ground laser links[C]. SPIE, 2011, 7923: 792303.

    [19] Karafolas N, Sodnik Z, Armengol J M P, et al.. Optical communications in space[C]. International Conference on Optical Network Design and Modeling, 2009: 19-24.

    [20] Smutny B, Lange R, Kampfner H, et al.. In-orbit verification of optical inter-satellite communication links based on homodyne BPSK[C]. SPIE, 2008, 6877: 687702.

    [21] Wu Congjun, Yan Changxiang, Gao Zhiliang. Overview of space laser communications[J]. Chinese Optics, 2013, 6(5): 670-680.

    [22] Baister G, Dreischer T, Fischer E. OPTEL family of optical terminals for space based and airborne platform communications links[C]. SPIE, 2005, 5986: 59860Z.

    [23] Baister G, Kudielka K, Dreischer T, et al.. Results from the DOLCE (deep space optical link communications experiment) project[C]. SPIE, 2009, 7199: 71990B.

    [24] Heine F, Muhlnikel G, Zech H, et al.. The European Data Relay System, high speed laser based data links[C]. Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC), 2014: 284-286.

    [25] Bohmer K, Gregory M, Heine F, et al.. Laser communication terminals for the European data relay system[C]. SPIE, 2012, 8246: 82460D.

    [26] Seel S, Troendle D, Heine F, et al.. Alphasat laser terminal commissioning status aiming to demonstrate GEO-relay for sentinel SAR and optical sensor data[C]. 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2014: 100-101.

    [27] Wilson K E, Lesh J R, Araki K, et al.. Preliminary results of the ground/orbiter lasercom demonstration experiment between table mountain and the ETS-VI satellite[C]. SPIE, 1996, 2699: 121-132.

    [28] Jono T, Toyoda M, Nakagawa K, et al.. Acquisition, tracking and pointing system of OICETS for free space laser communications[C]. SPIE, 1999, 3692: 41-50.

    [29] Takayama Y, Toyoshima M, Kura N. Estimation of accessible probability in a low earth orbit satellite to ground laser communications[J]. Radio Engineering, 2010, 19(2): 249-253.

    [30] Yamakawa S, Hanada T, Kohata H. R & D status of the next generation optical communication terminals in JAXA[C]. International Conference on Space Optical Systems and Applications (ICSOS), 2011: 389-393.

    [31] Zhang Liang, Guo Lihong, Liu Xiangnan, et al.. Latest progress and trends of development of space laser communication [J]. Journal of Spacecraft TT&C Technology, 2013, 32(4): 286-293.

    [32] Koishi Y, Suzuki Y, Takahashi T, et al.. Research and development of 40 Gbps optical free space communication from satellite/airplane[C]. International Conference on Space Optical Systems and Applications (ICSOS), 2011: 88-92.

    [33] Hemmati H. Status of free-space optical communications program at JPL[C]. IEEE Aerospace Conference, 2000, 3: 101-105.

    [34] Chen C, Lesh J R. Overview of the Optical Communications Demonstrator[C]. SPIE, 1994, 2123: 85-95.

    [35] Biswas A, Wright M W, Sanii B, et al.. 45-km horizontal path optical link demonstration[C]. SPIE, 2001, 4272: 60-71.

    [36] Korevaar E J, Hofmeister R J, Schuster J J, et al.. Design of satellite terminal for ballistic missile defense organization (BMDO) lasercom technology demonstration[C]. SPIE, 1995, 2381: 60-71.

    [37] Kim I I, Hakakha H, Riley B, et al.. Preliminary results of the STRV-2 satellite-to-ground lasercom experiment[C]. SPIE, 2000, 3932: 21-34.

    [38] Kim I I, Riley B, Wong N M, et al.. Lessons learned for STRV-2 satellite-to-ground lasercom experiment[C]. SPIE, 2001, 4272: 1-15.

    [39] Song Tingting, Ma Jing, Tan Liying, et al.. Experiment design and development of the lunar laser communication demonstration in USA[J]. Lasers & Optoelectronics Progress, 2014, 51(4): 040004.

    [40] Song Tingting, Ma Jing, Tan Liying, et al.. Lunar laser communication demonstration in USA: Terminal design[J]. Lasers & Optoelectronics Progress, 2014, 51(5): 050003.

    [41] Boroson D M, Scozzafava J J, Murphy D V, et al.. The lunar laser communications demonstration (LLCD) [C]. Third IEEE International Conference on Space Mission Challenges for Information Technology, 2009: 23-28.

    [42] Burnside J W, Conrad S D, Pillsbury A D, et al.. Design of an inertially stabilized telescope for the LLCD[C]. SPIE, 2011, 7923: 79230L.

    [43] Nevin K E, Doyle K B, Pillsbury A D. Optomechanical design and analysis for the LLCD space terminal telescope[C]. SPIE, 2011, 8127: 81270G.

    [44] Boroson D M, Robinson B S, Murphy D V, et al.. Overview and results of the lunar laser communication demonstration[C]. SPIE, 2014, 8971: 89710S.

    [45] Oaida B V, Wu W, Erkmen B I, et al.. Optical link design and validation testing of the optical payload for lasercomm science (OPALS) system[C]. SPIE, 2014, 8971: 89710U.

    [46] Fu Qiang, Jiang Huilin, Wang Xiaoman, et al.. Research status and development trend of space laser communication[J]. Chinese Optics, 2012, 5(2): 116-125.

    [47] Wu Feng, Yu Siyuan, Ma Zhongtian, et al.. Correction of pointing angle deviation and in-orbit validation in satelliteground laser communication links[J]. Chinese J Lasers, 2014, 41(6): 0605008.

    [48] Zhang M, Zhang L, Wu J C, et al.. Detection and compensation of basis deviation in satellite-to-ground quantum communications[J]. Opt Express, 2014, 22(8): 9871-9886.

    [49] Yin J, Ren J G, Lu H, et al.. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels[J]. Nature, 2012, 488(7410): 185-188.

    [50] Wang J Y, Yang B, Liao S K, et al.. Direct and full-scale experimental verifications towards ground-satellite quantum key distribution[J]. Nature Photonics, 2013, 7(5): 387-393.

    [51] Zhao Shanghong, Wu Jili, Li Yongjun, et al.. Present status and developing trends of satellite laser communication[J]. Lasers & Optoelectronics Progress, 2011, 48(9): 092801.

    [52] Lü Chunlei, Tong Shoufeng, Jiang Huilin, et al.. Key technology and recent advances of deep-space laser communication [J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2012, 35(1): 1-5.

    [53] Ke Xizheng, Liu Mei. Diversity reception technology over atmospheric turbulence channels in wireless optical communication [J]. Acta Optica Sinica, 2015, 35(1): 0106005.

    [54] Defense Industry Daily. Special Report: The USA′ s Transformational Communications Satellite System (TSAT) [EB/OL]. (2009-06-08). [2015-03-19]. http://www.defenseindustrydaily.com/special-report-the-usas-transformationalcommunications-satellite-system-tsat-0866/.

    [55] Brandl P, Plank T, Leitgeb E. Optical wireless links in future space communications with high data rate demands[C]. IEEE International Workshop on Satellite and Space Communications, 2009: 305-309.

    [56] Chen Y J, Hemmati H, Ortiz G G. Feasibility of infrared earth tracking for deep-space optical communications[J]. Opt Lett, 2012, 37(1): 73-75.

    [57] Ma X S, Herbst T, Scheidl T, et al.. Quantum teleportation over 143 kilometres using active feed-forward[J]. Nature, 2012, 489(7415): 269-273.

    CLP Journals

    [1] Gao Yinan, Song Yansong, Zhang Lei, Dong Keyan, Liu Yang. Fast and High-Precision Position Detection and Calibration for Tilt Mirror[J]. Laser & Optoelectronics Progress, 2017, 54(9): 90603

    [2] Han Liqiang, You Yahui. Performance Analysis of All-Optical Dual-Hop Free-Space Optical Communication Systems[J]. Laser & Optoelectronics Progress, 2016, 53(5): 50101

    [3] Hu Guojie, Liu Bailin, Zhou Zuoxin, Li Jian, Liu Shaoran. Analysis of Thermal Stability of Laser Communication Antenna Influenced by Optical and Thermal Properties of Solar Window[J]. Chinese Journal of Lasers, 2016, 43(7): 706002

    Bai Shuai, Wang Jianyu, Zhang Liang, Yang Mingdong. Development Progress and Trends of Space Optical Communications[J]. Laser & Optoelectronics Progress, 2015, 52(7): 70001
    Download Citation