• Photonic Sensors
  • Vol. 7, Issue 2, 171 (2017)
Chi SONG1、2、*, Xuejun ZHANG1、3, Xin ZHANG1、3, Haifei HU1、3, and Xuefeng ZENG1、3
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
  • 2University of Chinese Academy of Sciences, Beijing, 100049, China
  • 3Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun, 130033, China
  • show less
    DOI: 10.1007/s13320-017-0400-x Cite this Article
    Chi SONG, Xuejun ZHANG, Xin ZHANG, Haifei HU, Xuefeng ZENG. Improving Smoothing Efficiency of Rigid Conformal Polishing Tool Using Time-Dependent Smoothing Evaluation Model[J]. Photonic Sensors, 2017, 7(2): 171 Copy Citation Text show less
    References

    [1] J. Nelson and G. H. Sanders, “The status of the thirty meter telescope project,” SPIE, 2008, 7012: 70121A-1 70121A-18.

    [2] M. Johns, P. Mccarthy, K. Raybould, A. Bouchez, A. Farahani, J. Filgueira, et al., “Giant magellan telescope: overview,” SPIE, 2012, 8444: 84441H-1 84441H-16.

    [3] T. Hull, M. J. Riso, J. M. Barentine, and A. Magruder, “Mid-spatial frequency matters: examples of the control of the power spectral density and what that means to the performance of imaging systems,” SPIE, 2012, 8353: 835329-1 835329-17.

    [4] D. W. Kim and J. H. Burge, “Rigid conformal polishing tool using non-linear visco-elastic effect,” Optics Express, 2010, 18(3): 2242 2257.

    [5] H. M. Martin, D. S. Anderson, J. R. P. Angel, R. H. Nagel, S. C. West, and R. S. Young, “Progress in the stressed-lap polishing of a 1.8-mf/1 mirror,” SPIE, 1990, 1236: 682 690.

    [6] J. H. Burge, B. Anderson, S. Benjamin, M. K. Cho, K. Z. Smith, and M. J. Valente, “Development of optimal grinding and polishing tools for aspheric surfaces,” SPIE, 1990, 4451: 153 164.

    [7] Y. Shu, X. Nie, F. Shi, and S. Li, “Compare study between smoothing efficiencies of epicyclic motion and orbital motion,” Optik International Journal for Light and Electron Optics, 2014, 125(16): 4441 4445.

    [8] N. J. Brown, P. C. Baker, and R. E. Parks, “Polishing-to-figuring transition in turned optics,” Contemporary Methods of Optical Fabrication, 1981, 306(6): 58 65.

    [9] R. A. Jones, “Computer simulation of smoothing during computer-controlled optical polishing,” Applied Optics, 1995, 34(7): 1162 1169.

    [10] P. K. Mehta and P. B. Reid, “Mathematical model for optical smoothing prediction of high-spatial- frequency surface errors,” SPIE, 1999, 3786: 447 459.

    [11] M. T. Tuell, J. H. Burge, and B. Anderson. “Aspheric optics: Smoothing the ripples with semi-flexible tools,” Optical Engineering, 2002, 15(2): 1473 1474.

    [12] D. W. Kim, W. H. Park, H. K. An, and J. H. Burge, “Parametric smoothing model for visco-elastic polishing tools,” Optics Express, 2010, 18(21): 22515 22526.

    [13] Y. Shu, D. W. Kim, H. M. Martin, and J. H. Burge, “Correlation-based smoothing model for optical polishing,” Optics Express, 2013, 21(23): 28771 28782.

    [14] Y. Shu, X. Nie, F. Shi, and S. Li, “Smoothing evolution model for computer controlled optical surfacing,” Journal of Optical Technology, 2014, 81(3): 164 167.

    [15] X. Nie, S. Li, F. Shi, and H. Hu, “Generalized numerical pressure distribution model for smoothing polishing of irregular midspatial frequency errors,” Applied Optics, 2014, 53(6): 1020 1027.

    [16] A. C. Fischer-Cripps, “Multiple-frequency dynamic nanoindentation testing,” Journal of Materials Research, 2004, 19(19): 2981 2988.

    [17] J. H. Burge, D. W. Kim, and H. M. Martin, “Process optimization for polishing large aspheric mirrors,” SPIE, 2014, 9151: 91512R-1 91512R-13.

    Chi SONG, Xuejun ZHANG, Xin ZHANG, Haifei HU, Xuefeng ZENG. Improving Smoothing Efficiency of Rigid Conformal Polishing Tool Using Time-Dependent Smoothing Evaluation Model[J]. Photonic Sensors, 2017, 7(2): 171
    Download Citation