• Acta Optica Sinica
  • Vol. 33, Issue 1, 130002 (2013)
Ling Liuyi1、2、*, Xie Pinhua1, Qin Min1, Hu Renzhi1, Fang Wu1, Zheng Nina1, and Si Fuqi1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201333.0130002 Cite this Article Set citation alerts
    Ling Liuyi, Xie Pinhua, Qin Min, Hu Renzhi, Fang Wu, Zheng Nina, Si Fuqi. Open-Path Incoherent Broadband Cavity Enhanced Absorption Spectroscopy for Measurements of Atmospheric NO2[J]. Acta Optica Sinica, 2013, 33(1): 130002 Copy Citation Text show less
    References

    [1] A. L. Goodman, G. M. Underwood, V. H. Grassian. Heterogeneous reaction of NO2: characterization of gas-phase and adsorbed products from the reaction, 2NO2(g)+H2O(a)-HONO(g)+HNO3(a) on hydrated silica particles [J]. J. Phys. Chem. A, 1999, 103(36): 7217~7223

    [2] P. J. Crutzen. The role of NO and NO2 in the chemistry of the troposphere and stratosphere [J]. Ann. Rev. Earth Planet Sci., 1979, 7: 443~472

    [3] Li Weikeng, Wang Xuemei, Zhang Yiqiang. Influence of PRD industrial emission variation on concentrations of SO2, NOx and their secondary pollutants [J]. Research of Environmental Sciences, 2009, 22(2): 207~214

    [4] G. S. Meena, D. B. Jadhav. Study of diurnal and seasonal variation of atmospheric NO2, O3, H2O and O4 at Pune, india [J]. Atmosfera., 2007, 20(3): 271~287

    [5] Wu Wan′e, Du Yong, Wang Tiansheng et al.. Determination of NO2 in air by chemiluminescence detection [J]. Environmental Science & Technology, 2009, 32(10): 133~136

    [6] A. Cede, J. Herman, A. Richter et al.. Measurements of nitrogen dioxide total column amounts using a Brewer double spectrophotometer in direct Sun mode [J]. J. Geophys. Res., 2006, 111(D5): D05304

    [7] E. Puckrin, W. F. J. Evans. A comparison of NO2 absorption measurements from an FTIR spectrometer and the OSIRIS spectrograph [J]. Can. J. Phys., 2007, 85(11): 1245~1252

    [8] Cui Zhifeng, Chen Dong, Feng Eryin et al.. Laser-induced fluorescence excitation spectrum of NO2 in the region of 500~532 nm at room temperature [J]. Acta Physica Sinica, 2000, 49(11): 2151~2158

    [9] Ling Liuyi, Xie Pinhua, Qin Min et al.. Research on the influence etalon structures of LED on differential optical absorption spectroscopy system for measuring NO2 and its removing methods [J]. Acta Optica Sinica, 2011, 31(12): 1230003

    [10] Zhou Haijin, Liu Wenqing, Si Fuqi et al.. Retrieval of atmospheric NO2 vertical profile from multi-axis differential optical absorption spectroscopy[J]. Acta Optica Sinica, 2011, 31(11): 1101007

    [11] J. B. Paul, J. J. Scherer, A. Okeefe et al.. Cavity ringdown measures trace concentrations [J]. Laser Focus World, 1997, 33(3): 71~80

    [12] D. Romanini, A. A. Kachanov, N. Sadeghi et al.. CW cavity ring down spectroscopy [J]. Chem. Phys. Lett., 1997, 264(3-4): 316~322

    [13] L. Gianfrani, R. W. Fox, L. Hollberg. Cavity-enhanced absorption spectroscopy of molecular oxygen [J]. J. Opt. Soc. Am. B, 1999, 16(12): 2247~2254

    [14] R. Engeln, G. Berden, R. Peeters et al.. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy [J]. Rev. Sci. Instrum., 1998, 69(11): 3763~3769

    [15] S. E. Fiedler, A. A. Hese, A. Ruth. Incoherent broad-band cavity-enhanced absorption spectroscopy [J]. Chem. Phys. Lett., 2003, 371(3-4): 284~294

    [16] S. M. Ball, J. M. Lamgridge, R. L. Jones. Broadband cavity enhanced absorption spectroscopy using light emitting diodes [J]. Chem. Phys. Lett., 2004, 398(1-3): 68~74

    [17] Ling Liuyi, Qin Min, Xie Pinhua et al.. Incoherent broadband cavity enhanced absorption spectroscopy for measurements of HONO and NO2 with a LED optical source[J]. Acta Physica Sinica, 2012, 61(14): 140703

    [18] D. S. Venables, T. Gherman, J. Orphal et al.. High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy [J]. Environ. Sci. Technol., 2006, 40(2): 6758~6763

    [19] J. M. Lamgridge, S. M. Ball, R. L. Jones. A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes [J]. Analyst, 2006, 131(8): 916~922

    [20] J. M. Lamgridge, S. M. Ball, A. J. L. Shillings et al.. A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection [J]. Rev. Sci. Instrum., 2008, 79(12): 123110

    [21] M. Triki, P. Cermak, G. Mejean et al.. Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis [J]. Appl. Phys. B, 2008, 91(1): 195~201

    [22] T. Wu, W. Zhao, W. Chen et al.. Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode [J]. Appl. Phys. B, 2009, 94(11): 85~94

    [23] J. Meinen, J. Thieser, U. Platt et al.. Technical note: using a high finesse optical resonator to provide a long light path for differential optical absorption spectroscopy [J]. Atmos. Chem. Phys., 2010, 10(8): 3901~3914

    [24] O. J. Kennedy, B. Ouyang, J. M. Langridge et al.. An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2 [J]. Atmos. Meas. Tech., 2011, 4(3): 1759~1775

    [25] T. Wu, W. Chen, E. Fertein et al.. Development of an open-path incoherent broadband cavity-enhanced spectroscopy based instrument for simultaneous measurement of HONO and NO2 in ambient air [J]. Appl. Phys. B, 2011, 106(2): 501~509

    [26] S. Vaughan, T. Gherman, A. A. Ruth et al.. Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO [J]. Phys. Chem. Chem. Phys., 2008, 10(30): 4471~4477

    [27] R. Thalman, R. Volkamer. Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode [J]. Atoms. Meas. Tech., 2010, 3(6): 1797~1814

    [28] J. M. Langridge, T. Laurila, R. S. Watt et al.. Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source [J]. Opt. Express, 2008, 16(14): 10178~10188

    [29] R. A. Washenfelder, A. O. Langford, H. Fuchs et al.. Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer [J]. Atmos. Chem. Phys., 2008, 8(4): 7779~7793

    [30] J. Chen, D. S. Venables. A broadband optical cavity spectrometer for measuring weak near-ultraviolet absorption spectra of gases [J]. Atmos. Meas. Tech., 2011, 8(4): 425~436

    [31] S. Shardanand, A. D. P. Rao. Absolute Rayleigh scattering cross sections of gases and freons of stratospheric interest in the visible and ultraviolet regions [J]. Geophysics, 1977

    [32] M. Sneep, W. Ubachs. Direct measurement of the Rayleigh scattering cross section in various gases [J]. J. Quantum Spectrosc. Radiat. Transf., 2005, 92: 293~310

    [33] G. D. Greenblatt, J. J. Orlando, J. B. Burkholder et al.. Absorption measurements of oxygen between 330 and 1140 nm [J]. J. Geophys. Res., 1990, 95(11): 18577~18582

    [34] S. Voigt, J. Orphal, J. P. Burrows. The temperature- and pressure-dependence of the absorption cross-sections of NO2 in the 250~800 nm region measured by Fourier-transform spectroscopy [J]. J. Photoch. Photobio. A, 2002, 149(1-3): 1~7

    [35] U. Platt, J. Meinen, D. Phler et al.. Broadband cavity enhanced differential optical absorption spectroscopy (CE-DOAS)-applicability and corrections [J]. Atmos. Meas. Tech., 2009, 2(2): 713~723

    [36] J. P. Burrows, A. Dehn, B. Deters et al.. Atmospheric remote-sensing reference data from GOME: 2. temperature-dependent absorption cross sections of O3 in the 231~794 nm range [J]. J. Quantum Spectrosc. Radiat. Transf., 1999, 61(4): 509~517

    [37] F. Jiang, H. Guo, T. J. Wang et al.. An ozone episode in the pearl river delta: field observation and model simulation [J]. J. Geophys. Res., 2009, 115(D22): D22305

    [38] L. Rothman, A. Barbe, D. C. Benner et al.. The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001 [J]. J. Quantum Spectrosc. Radiat. Transf., 2003, 82(1-4): 5~44

    CLP Journals

    [1] Chen Haiyan, Chen Cong, Chen Lilin, Wang Meng, Li Qi, Huang Kaiqiang. Response of Fiber Bragg Grating Fabry-Perot Cavity to Pulsed Laser Injection[J]. Chinese Journal of Lasers, 2014, 41(s1): 105010

    [2] Zhang Qilei, Xu Xuezhe, Zhao Weixiong, Cui Zhifeng, Zhang Weijun. Measurement of Aerosol Optical Properties Using a Chernin Multipass Cell[J]. Acta Optica Sinica, 2015, 35(9): 930001

    [3] Hu Renzhi, Wang Dan, Xie Pinhua, Chen Hao, Ling Liuyi. Diode Laser Cavity Ring-Down Spectroscopy for Atmospheric NO2 Measurement[J]. Acta Optica Sinica, 2016, 36(2): 230006

    Ling Liuyi, Xie Pinhua, Qin Min, Hu Renzhi, Fang Wu, Zheng Nina, Si Fuqi. Open-Path Incoherent Broadband Cavity Enhanced Absorption Spectroscopy for Measurements of Atmospheric NO2[J]. Acta Optica Sinica, 2013, 33(1): 130002
    Download Citation