• Advanced Photonics
  • Vol. 7, Issue 3, 034002 (2025)
Bin Zhang, Wenchao Yan*, and Feng Chen*
Author Affiliations
  • Shandong University, School of Physics, State Key Laboratory of Crystal Materials, Jinan, China
  • show less
    DOI: 10.1117/1.AP.7.3.034002 Cite this Article Set citation alerts
    Bin Zhang, Wenchao Yan, Feng Chen, "Recent advances in femtosecond laser direct writing of three-dimensional periodic photonic structures in transparent materials," Adv. Photon. 7, 034002 (2025) Copy Citation Text show less
    References

    [1] T. Xu et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nat. Photonics, 12, 591-595(2018). https://doi.org/10.1038/s41566-018-0225-1

    [2] D. Wei et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photonics, 12, 596-600(2018). https://doi.org/10.1038/s41566-018-0240-2

    [3] B. Zhang, L. Wang, F. Chen. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications. Laser Photonics Rev., 14, 1900407(2020). https://doi.org/10.1002/lpor.201900407

    [4] Y. Zhang et al. Nonlinear photonic crystals: from 2D to 3D. Optica, 8, 372-381(2021). https://doi.org/10.1364/OPTICA.416619

    [5] F. Y. Zhao et al. Vortex solitons in quasi-phase-matched photonic crystals. Phys. Rev. Lett., 130, 157203(2023). https://doi.org/10.1103/PhysRevLett.130.157203

    [6] X. X. Xu et al. Semidiscrete optical vortex droplets in quasi-phase-matched photonic crystals. Opt. Express, 31, 38343-38354(2023). https://doi.org/10.1364/OE.506130

    [7] A. M. Vyunishev, V. G. Arkhipkin, A. S. Chirkin. Frequency doubling of femtosecond laser pulses in three dimensional nonlinear photonic crystals. Laser Phys. Lett., 20, 035402(2023). https://doi.org/10.1088/1612-202X/acb7f5

    [8] Q. Yu et al. Manipulating orbital angular momentum entanglement in three-dimensional spiral nonlinear photonic crystals. Photonics, 9, 504(2022). https://doi.org/10.3390/photonics9070504

    [9] Y. Liu et al. Visible and online detection of near-infrared optical vortices via nonlinear photonic crystals. Adv. Opt. Mater., 10, 2101098(2022). https://doi.org/10.1002/adom.202101098

    [10] A. Gómez-Tornero et al. Enhancing nonlinear interactions by the superposition of plasmonic lattices on χ(2)-nonlinear photonic crystals. ACS Photonics, 8, 2529-2537(2021). https://doi.org/10.1021/acsphotonics.1c00778

    [11] A. Arie. Storing and retrieving multiple images in 3D nonlinear photonic crystals. Light Sci. Appl., 10, 202(2021). https://doi.org/10.1038/s41377-021-00631-5

    [12] C. Li et al. Three-dimensional nonlinear photonic crystal in naturally grown potassium-tantalate-niobate perovskite ferroelectrics. Light Sci. Appl., 9, 193(2020). https://doi.org/10.1038/s41377-020-00427-z

    [13] X. Y. Fang et al. Multichannel nonlinear holography in a two-dimensional nonlinear photonic crystal. Phys. Rev. A, 102, 043506(2020). https://doi.org/10.1103/PhysRevA.102.043506

    [14] N. G. R. Broderick et al. Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal. Phys. Rev. Lett., 84, 4345-4348(2000). https://doi.org/10.1103/PhysRevLett.84.4345

    [15] Q. L. Liu et al. Ferroelectric domain reversal dynamics in LiNbO3 optical superlattice investigated with a real-time monitoring system. Small, 18, 2202761(2022). https://doi.org/10.1002/smll.202202761

    [16] Y. Sheng et al. Research progress on femtosecond laser poling of ferroelectrics. Photonics, 11, 447(2024). https://doi.org/10.3390/photonics11050447

    [17] L. Q. Li, W. J. Kong, F. Chen. Femtosecond laser-inscribed optical waveguides in dielectric crystals: a concise review and recent advances. Adv. Photonics, 4, 024002(2022). https://doi.org/10.1117/1.AP.4.2.024002

    [18] B. Zhang et al. Femtosecond laser modification of 6H-SiC crystals for waveguide devices. Appl. Phys. Lett., 116, 111903(2020). https://doi.org/10.1063/1.5145025

    [19] J. Wu et al. Helical hollow channel waveguide in YAG fabricated by femtosecond laser enhanced wet etching. Opt. Lett., 49, 2441-2444(2024). https://doi.org/10.1364/OL.523400

    [20] Y. M. Shen et al. Femtosecond-laser-written helical cladding waveguides: 3D fabrication and mode modulation. Opt. Laser Technol., 163, 109337(2023). https://doi.org/10.1016/j.optlastec.2023.109337

    [21] Y. D. Wang et al. Phase customization in photonic integrated circuits with trimmed waveguides. Opt. Lett., 47, 5889-5892(2022). https://doi.org/10.1364/OL.474179

    [22] Y. M. Shen et al. Femtosecond laser writing of waveguides in zinc oxide crystals: fabrication and mode modulation. Opt. Express, 30, 27694-27703(2022). https://doi.org/10.1364/OE.462649

    [23] F. Yu et al. Polarization independent quantum devices with ultra-low birefringence glass waveguides. J. Lightwave Technol., 39, 1451-1457(2021). https://doi.org/10.1109/JLT.2020.3022413

    [24] Z.-Z. Li et al. Circular cross section waveguides processed by multi-foci-shaped femtosecond pulses. Opt. Lett., 46, 520-523(2021). https://doi.org/10.1364/OL.414962

    [25] Y. Jia, S. Wang, F. Chen. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electron. Adv., 3, 190042(2020). https://doi.org/10.29026/oea.2020.190042

    [26] J. X. Liu et al. New channel guiding structures via femtosecond laser direct writing z-cut LiNbO3 crystals. Results Phys., 57, 107379(2024). https://doi.org/10.1016/j.rinp.2024.107379

    [27] X. Y. Zhang et al. Telecom-band-integrated multimode photonic quantum memory. Sci. Adv., 9, eadf4587(2023). https://doi.org/10.1126/sciadv.adf4587

    [28] B. Zhang et al. Femtosecond laser inscribed novel polarization beam splitters based on tailored waveguide configurations. J. Lightwave Technol., 39, 1438-1443(2021). https://doi.org/10.1109/JLT.2020.3038438

    [29] F. Chen, J. R. Vazquez de Aldana. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev., 8, 251-275(2014). https://doi.org/10.1002/lpor.201300025

    [30] L. Yang et al. Generating a sub-nanometer-confined optical field in a nanoslit waveguiding mode. Adv. Photonics, 5, 046003(2023). https://doi.org/10.1117/1.AP.5.4.046003

    [31] F. Chen et al. Channel waveguide array in Ce-doped potassium sodium strontium barium niobate crystal fabricated by He+ ion implantation. Appl. Phys. Lett., 89, 191102(2006). https://doi.org/10.1063/1.2374848

    [32] F. Chen et al. Optical channel waveguides with trapezoidal-shaped cross sections in KTiOPO4 crystal fabricated by ion implantation. Appl. Surf. Sci., 254, 1822-1824(2008). https://doi.org/10.1016/j.apsusc.2007.07.160

    [33] R. V. Ramaswamy, R. Srivastava. Ion-exchanged glass wave-guides - a review. J. Lightwave Technol., 6, 984-1000(1988). https://doi.org/10.1109/50.4090

    [34] K. R. Parameswaran et al. Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate. Opt. Lett., 27, 179-181(2002). https://doi.org/10.1364/OL.27.000179

    [35] D. Bruske et al. Efficient ridge waveguide amplifiers and lasers in Er-doped lithium niobate by optical grade dicing and three-side Er and Ti in-diffusion. Opt. Express, 25, 29374-29379(2017). https://doi.org/10.1364/OE.25.029374

    [36] V. Sivan et al. Investigation of the physical origins of etching LiNbO3 during Ti in-diffusion. Appl. Phys. Lett., 96, 121913(2010). https://doi.org/10.1063/1.3367742

    [37] L. Gui et al. Local periodic poling of ridges and ridge waveguides on X- and Y-cut LiNbO3 and its application for second harmonic generation. Opt. Express, 17, 3923-3928(2009). https://doi.org/10.1364/OE.17.003923

    [38] X. J. Wang et al. Laser manufacturing of spatial resolution approaching quantum limit. Light Sci. Appl., 13, 6(2024). https://doi.org/10.1038/s41377-023-01354-5

    [39] H. J. Wang et al. Increasing efficiency of ultrafast laser writing via nonlocality of light-matter interaction. Laser Photonics Rev., 18, 2301143(2024). https://doi.org/10.1002/lpor.202301143

    [40] J. X. Zheng et al. Advances in fabrication of micro-optical components by femtosecond laser with etching technology. Opt. Laser Technol., 167, 109793(2023). https://doi.org/10.1016/j.optlastec.2023.109793

    [41] B. Zhang et al. Ultrafast laser-induced self-organized nanostructuring in transparent dielectrics: fundamentals and applications. PhotoniX, 4, 24(2023). https://doi.org/10.1186/s43074-023-00101-8

    [42] Z. Wang et al. 3D imprinting of voxel-level structural colors in lithium niobate crystal. Adv. Mater., 35, 2303256(2023). https://doi.org/10.1002/adma.202303256

    [43] I. Ramon-Conde et al. Study of the processing conditions for stainless steel additive manufacturing using femtosecond laser. Opt. Laser Technol., 161, 109232(2023). https://doi.org/10.1016/j.optlastec.2023.109232

    [44] B. Lisjikh et al. Creation of a periodic domain structure in MgOLN by femtosecond laser irradiation. Photonics, 10, 1211(2023). https://doi.org/10.3390/photonics10111211

    [45] J. Q. Li et al. Nanoscale multi-beam lithography of photonic crystals with ultrafast laser. Light Sci. Appl., 12, 164(2023). https://doi.org/10.1038/s41377-023-01178-3

    [46] Y. H. Lei et al. Ultrafast laser writing in different types of silica glass. Laser Photonics Rev., 17, 2200978(2023). https://doi.org/10.1002/lpor.202200978

    [47] P. L. Lai et al. Multiplexing linear and nonlinear Bragg diffractions through volume gratings fabricated by femtosecond laser writing in lithium niobate crystal. Photonics, 10, 562(2023). https://doi.org/10.3390/photonics10050562

    [48] K. Sun et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science, 375, 307(2022). https://doi.org/10.1126/science.abj2691

    [49] S.-F. Liu et al. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding. Science, 377, 1112-1116(2022). https://doi.org/10.1126/science.abo5345

    [50] B. Zhang et al. Ultrafast laser inducing continuous periodic crystallization in the glass activated via laser-prepared crystallite-seeds. Adv. Opt. Mater., 9, 2001962(2021). https://doi.org/10.1002/adom.202001962

    [51] B. Zhang et al. Self-organized phase-transition lithography for all-inorganic photonic textures. Light Sci. Appl., 10, 93(2021). https://doi.org/10.1038/s41377-021-00534-5

    [52] S. Xu et al. Ultrafast laser-inscribed nanogratings in sapphire for geometric phase elements. Opt. Lett., 46, 536-539(2021). https://doi.org/10.1364/OL.413177

    [53] D. Tan, B. Zhang, J. Qiu. Ultrafast laser direct writing in glass: thermal accumulation engineering and applications. Laser Photonics Rev., 15, 2000455(2021). https://doi.org/10.1002/lpor.202000455

    [54] D. Tan et al. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Adv. Photonics, 3, 024002(2021). https://doi.org/10.1117/1.AP.3.2.024002

    [55] X. J. Huang et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photonics, 14, 82(2020). https://doi.org/10.1038/s41566-019-0538-8

    [56] B. Zhang et al. Self-organized periodic crystallization in unconventional glass created by an ultrafast laser for optical attenuation in the broadband near-infrared region. Adv. Opt. Mater., 7, 1900593(2019). https://doi.org/10.1002/adom.201900593

    [57] A. Rodenas et al. Three-dimensional femtosecond laser nanolithography of crystals. Nat. Photonics, 13, 105-109(2019). https://doi.org/10.1038/s41566-018-0327-9

    [58] X.-Q. Liu et al. Etching-assisted femtosecond laser modification of hard materials. Opto-Electron. Adv., 2, 19002101(2019). https://doi.org/10.29026/oea.2019.190021

    [59] F. Sima et al. Three-dimensional femtosecond laser processing for lab-on-a-chip applications. Nanophotonics, 7, 613-634(2018). https://doi.org/10.1515/nanoph-2017-0097

    [60] P. I. Dietrich et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nat. Photonics, 12, 241-247(2018). https://doi.org/10.1038/s41566-018-0133-4

    [61] R. R. Gattass, E. Mazur. Femtosecond laser micromachining in transparent materials. Nat. Photonics, 2, 219-225(2008). https://doi.org/10.1038/nphoton.2008.47

    [62] A. Y. Vorobyev, C. Guo. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev., 7, 385-407(2013). https://doi.org/10.1002/lpor.201200017

    [63] D. Choudhury, J. R. Macdonald, A. K. Kar. Ultrafast laser inscription: perspectives on future integrated applications. Laser Photonics Rev., 8, 827-846(2014). https://doi.org/10.1002/lpor.201300195

    [64] K. Sugioka, Y. Cheng. Femtosecond laser three-dimensional micro- and nanofabrication. Appl. Phys. Rev., 1, 041303(2014). https://doi.org/10.1063/1.4904320

    [65] L. Shi et al. Ultrafast laser writing structural colors on TiAlN-TiN hybrid films. Light: Adv. Manuf., 5, 6(2024). https://doi.org/10.37188/lam.2025.006

    [66] A. Tünnermann, C. Momma, S. Nolte. Perspective on ultrashort pulse laser micromachining. Appl. Phys. A, 129, 157(2023). https://doi.org/10.1007/s00339-023-06403-9

    [67] J. F. Lu et al. Tailoring chiral optical properties by femtosecond laser direct writing in silica. Light Sci. Appl., 12, 46(2023). https://doi.org/10.1038/s41377-023-01080-y

    [68] L. Huang et al. Imaging/nonimaging microoptical elements and stereoscopic systems based on femtosecond laser direct writing. Light: Adv. Manuf., 4, 37(2023). https://doi.org/10.37188/lam.2023.037

    [69] D. Z. Zhu et al. Direct laser writing breaking diffraction barrier based on two-focus parallel peripheral-photoinhibition lithography. Adv. Photonics, 4, 066002(2022). https://doi.org/10.1117/1.AP.4.6.066002

    [70] J. Zhao et al. Review of femtosecond laser direct writing fiber-optic structures based on refractive index modification and their applications. Opt. Laser Technol., 146, 107473(2022). https://doi.org/10.1016/j.optlastec.2021.107473

    [71] J. W. Sun et al. Lensless fiber endomicroscopy in biomedicine. PhotoniX, 5, 18(2024). https://doi.org/10.1186/s43074-024-00133-8

    [72] R. Kuschmierz et al. Ultra-thin 3D lensless fiber endoscopy using diffractive optical elements and deep neural networks. Light: Adv. Manuf., 2, 30(2021). https://doi.org/10.37188/lam.2021.030

    [73] C. R. Ocier et al. Direct laser writing of volumetric gradient index lenses and waveguides. Light Sci. Appl., 9, 196(2020). https://doi.org/10.1038/s41377-020-00431-3

    [74] D. Pallarés-Aldeiturriaga et al. Diffractive elements inscribed at end-fiber surface by femtosecond laser. J. Lightwave Technol., 37, 4523-4530(2019). https://doi.org/10.1109/JLT.2019.2909145

    [75] I. B. Sohn et al. Three-dimensional hologram printing by single beam femtosecond laser direct writing. Appl. Surf. Sci., 427, 396-400(2018). https://doi.org/10.1016/j.apsusc.2017.08.033

    [76] T. Gissibl et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics, 10, 554-560(2016). https://doi.org/10.1038/nphoton.2016.121

    [77] M. L. Tseng et al. Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique. Laser Photonics Rev., 6, 702-707(2012). https://doi.org/10.1002/lpor.201200029

    [78] S. Richter et al. On the fundamental structure of femtosecond laser-induced nanogratings. Laser Photonics Rev., 6, 787-792(2012). https://doi.org/10.1002/lpor.201200048

    [79] A. Szameit et al. Geometric potential and transport in photonic topological crystals. Phys. Rev. Lett., 104, 150403(2010). https://doi.org/10.1103/PhysRevLett.104.150403

    [80] Q. H. Gao et al. Single-molecule characterization from the perspective of optics, photonics, and optoelectronics: a review. Adv. Photonics, 6, 064002(2024). https://doi.org/10.1117/1.AP.6.6.064002

    [81] J. Wang et al. Tailoring light on three-dimensional photonic chips: a platform for versatile OAM mode optical interconnects. Adv. Photonics, 5, 036004(2023). https://doi.org/10.1117/1.AP.5.3.036004

    [82] Y. Z. Liang et al. Low-insertion-loss femtosecond laser-inscribed three-dimensional high-density mux/demux devices. Adv. Photonics Nexus, 2, 036002(2023). https://doi.org/10.1117/1.APN.2.3.036002

    [83] R. Li et al. Rapid fabrication of reconfigurable helical microswimmers with environmentally adaptive locomotion. Light: Adv. Manuf., 4, 29(2023).

    [84] C. W. Wang et al. Microclaw array fabricated by single exposure of femtosecond airy beam and self-assembly for regulating cell migratory plasticity. ACS Nano, 17, 9025-9038(2023). https://doi.org/10.1021/acsnano.2c11577

    [85] L. R. Zhang et al. High-throughput two-photon 3D printing enabled by holographic multi-foci high-speed scanning. Nano Lett., 24, 2671-2679(2024). https://doi.org/10.1021/acs.nanolett.4c00505

    [86] Y. C. Jia, F. Chen. Recent progress on femtosecond laser micro-/nano-fabrication of functional photonic structures in dielectric crystals: a brief review and perspective. APL Photonics, 8, 090901(2023). https://doi.org/10.1063/5.0160067

    [87] Y. L. Tian et al. A brief review on nonlinear photonic crystals induced by direct femtosecond laser writing. Photonics, 10, 833(2023). https://doi.org/10.3390/photonics10070833

    [88] S. Liu et al. Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals. Nat. Commun., 10, 3208(2019). https://doi.org/10.1038/s41467-019-11114-y

    [89] B. X. Wang et al. Nonlinear detour phase holography. Nanoscale, 13, 2693-2702(2021). https://doi.org/10.1039/D0NR07069F

    [90] J. X. Zheng et al. Arbitrary fabrication of complex lithium niobate three-dimensional microstructures for second harmonic generation enhancement. Opt. Lett., 49, 850-853(2024). https://doi.org/10.1364/OL.515576

    [91] E. Rozenberg et al. Inverse design of spontaneous parametric downconversion for generation of high-dimensional qudits. Optica, 9, 602-615(2022). https://doi.org/10.1364/OPTICA.451115

    [92] A. Karnieli, Y. Y. Li, A. Arie. The geometric phase in nonlinear frequency conversion. Front. Phys., 17, 12301(2022). https://doi.org/10.1007/s11467-021-1102-9

    [93] Y. S. Chen et al. Second-harmonic generation via nonlinear Raman–Nath diffraction in an optical fibonacci superlattice. Cryst. Res. Technol., 57, 2100193(2022). https://doi.org/10.1002/crat.202100193

    [94] Y. Liu et al. Switchable second-harmonic generation of Airy beam and Airy vortex beam. Adv. Opt. Mater., 9, 2001776(2021). https://doi.org/10.1002/adom.202001776

    [95] J. J. Ma et al. Nonlinear lithium niobate metasurfaces for second harmonic generation. Laser Photonics Rev., 15, 2000521(2021). https://doi.org/10.1002/lpor.202000521

    [96] W. Z. Yao et al. Angle-multiplexing nonlinear holography for controllable generations of second-harmonic structured light beams. Front. Phys., 9, 751860(2021). https://doi.org/10.3389/fphy.2021.751860

    [97] N. N. Wang et al. Structuring light beams via nonlinear diffraction in 3D nonlinear photonic crystal. Opt. Laser Technol., 168, 109994(2024). https://doi.org/10.1016/j.optlastec.2023.109994

    [98] C. W. Wang et al. Sequential three-dimensional nonlinear photonic structures for efficient and switchable nonlinear beam shaping. ACS Photonics, 10, 456-463(2023). https://doi.org/10.1021/acsphotonics.2c01562

    [99] X. K. Hu et al. Nonlinear generation of an optical bottle beam in domain-engineered ferroelectric crystals. Opt. Lett., 48, 5527-5530(2023). https://doi.org/10.1364/OL.501932

    [100] X. Y. Xu et al. Large field-of-view nonlinear holography in lithium niobate. Nano Lett., 24, 1303-1308(2024). https://doi.org/10.1021/acs.nanolett.3c04286

    [101] P. C. Chen et al. Laser nanoprinting of 3D nonlinear holograms beyond 25000 pixels-per-inch for inter-wavelength-band information processing. Nat. Commun., 14, 5523(2023). https://doi.org/10.1038/s41467-023-41350-2

    [102] P. C. Chen et al. Quasi-phase-matching-division multiplexing holography in a three-dimensional nonlinear photonic crystal. Light Sci. Appl., 10, 146(2021). https://doi.org/10.1038/s41377-021-00588-5

    [103] X. Chen et al. Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides. Opt. Lett., 41, 2410-2413(2016). https://doi.org/10.1364/OL.41.002410

    [104] C. Wang et al. Lithium tantalate photonic integrated circuits for volume manufacturing. Nature, 629, 784-790(2024). https://doi.org/10.1038/s41586-024-07369-1

    [105] T. X. Wang et al. Femtosecond-laser-assisted high-aspect-ratio nanolithography in lithium niobate. Nanoscale, 15, 15298-15303(2023). https://doi.org/10.1039/D3NR03750A

    [106] A. Boes et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science, 379, 40(2023). https://doi.org/10.1126/science.abj4396

    [107] X. P. Hu, Y. Zhang, S. N. Zhu. Nonlinear beam shaping in domain engineered ferroelectric crystals. Adv. Mater., 32, 1903775(2020). https://doi.org/10.1002/adma.201903775

    [108] M. C. Shao et al. Pushing periodic-disorder-induced phase matching into the deep-ultraviolet spectral region: theory and demonstration. Light Sci. Appl., 9, 45(2020). https://doi.org/10.1038/s41377-020-0281-4

    [109] S. Liu et al. Highly efficient 3D nonlinear photonic crystals in ferroelectrics. Adv. Opt. Mater., 11, 2300021(2023). https://doi.org/10.1002/adom.202300021

    [110] X. Y. Xu et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains. Nature, 609, 496(2022). https://doi.org/10.1038/s41586-022-05042-z

    [111] D. Wei et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals. Nat. Commun., 10, 4193(2019). https://doi.org/10.1038/s41467-019-12251-0

    [112] J. Thomas et al. Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate. Laser Photonics Rev., 7, L17-L20(2013). https://doi.org/10.1002/lpor.201200116

    [113] X. Chen et al. Ferroelectric domain engineering by focused infrared femtosecond pulses. Appl. Phys. Lett., 107, 141102(2015). https://doi.org/10.1063/1.4932199

    [114] J. Imbrock et al. Waveguide-integrated three-dimensional quasi-phase-matching structures. Optica, 7, 28-34(2020). https://doi.org/10.1364/OPTICA.7.000028

    [115] M. C. Shao et al. Angular engineering strategy of an additional periodic phase for widely tunable phase-matched deep-ultraviolet second harmonic generation. Light Sci. Appl., 11, 31(2022). https://doi.org/10.1038/s41377-022-00715-w

    [116] M. C. Shao et al. Spatial frequency manipulation of a quartz crystal for phase-matched second-harmonic vacuum ultraviolet generation. Laser Photonics Rev., 17, 2300244(2023). https://doi.org/10.1002/lpor.202300244

    [117] A. G. Okhrimchuk et al. Phase transformation under direct laser writing in a YAG single crystal. Opt. Mater. Express, 7, 3408-3421(2017). https://doi.org/10.1364/OME.7.003408

    [118] Y. Y. Zhang et al. Femtosecond laser direct writing of Nd:YAG waveguide with type I modification: positive refractive index change in track. Opt. Mater., 113, 110844(2021). https://doi.org/10.1016/j.optmat.2021.110844

    [119] M. R. Shcherbakov et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett., 14, 6488-6492(2014). https://doi.org/10.1021/nl503029j

    [120] H.-S. Zhong et al. 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett., 121, 250505(2018). https://doi.org/10.1103/PhysRevLett.121.250505

    [121] A. Flusberg, T. Mossberg, S. R. Hartmann. Optical difference-frequency-generation in atomic thallium vapor. Phys. Rev. Lett., 38, 59-62(1977). https://doi.org/10.1103/PhysRevLett.38.59

    [122] M. Vaidyanathan et al. Cascaded optical parametric oscillations. Opt. Express, 1, 49-53(1997). https://doi.org/10.1364/OE.1.000049

    [123] S. Kroesen et al. Monolithic fabrication of quasi phase-matched waveguides by femtosecond laser structuring the χ(2) nonlinearity. Appl. Phys. Lett., 107, 101109(2015). https://doi.org/10.1063/1.4930834

    [124] C. A. Xu et al. Manipulating the orbital-angular-momentum correlation of entangled two-photon states in three-dimensional nonlinear photonic crystals. Phys. Rev. A, 104, 063716(2021). https://doi.org/10.1103/PhysRevA.104.063716

    [125] F. Dai et al. Photon pair generation in lithium niobate waveguide periodically poled by femtosecond laser. Chin. Opt. Lett., 21, 042701(2023). https://doi.org/10.1364/COL.21.042701

    [126] X. Z. Yang et al. Spontaneous parametric downconversion in a laser-poled lithium niobate nonlinear photonic crystal with nanoscale resolution. Opt. Lett., 49, 5799-5802(2024). https://doi.org/10.1364/OL.538792

    [127] Z. M. Zhang et al. Cascaded second harmonic generation for deep-UV radiations with a 2D nonlinear photonic quartz crystal. Laser Photonics Rev., 18, 2300664(2024). https://doi.org/10.1002/lpor.202300664

    [128] T. G. Yuan et al. Femtosecond laser direct writing quasi-phase matched type-II waveguide in lithium niobate. Opt. Mater. Express, 13, 1-8(2023). https://doi.org/10.1364/OME.477618

    [129] X. Chen et al. Quasi-phase matched second harmonic generation in a PMN-38PT crystal. Opt. Lett., 47, 2056-2059(2022). https://doi.org/10.1364/OL.450042

    [130] R. A. Wang et al. Second-harmonic flat-top beam shaping via a three-dimensional nonlinear photonic crystal. Opt. Lett., 49, 1097-1100(2024). https://doi.org/10.1364/OL.516606

    [131] B. Zhu et al. High conversion efficiency second-harmonic beam shaping via amplitude-type nonlinear photonic crystals. Opt. Lett., 45, 220-223(2020). https://doi.org/10.1364/OL.45.000220

    [132] N. N. Wang et al. Effect of spatial variation of the duty cycle in transverse second-harmonic generation. Opt. Lett., 47, 3656-3659(2022). https://doi.org/10.1364/OL.459405

    [133] X. W. Xu et al. Large-scale single-crystal blue phase through holography lithography. Adv. Photonics Nexus, 2, 026004(2023). https://doi.org/10.1117/1.APN.2.2.026004

    [134] S. Liu et al. Nonlinear volume holography in 3D nonlinear photonic crystals. Laser Photonics Rev., 14, 2000224(2020). https://doi.org/10.1002/lpor.202000224

    [135] K. M. Davis et al. Writing waveguides in glass with a femtosecond laser. Opt. Lett., 21, 1729-1731(1996). https://doi.org/10.1364/OL.21.001729

    [136] F. D. M. Haldane, S. Raghu. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett., 100, 013904(2008). https://doi.org/10.1103/PhysRevLett.100.013904

    [137] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological photonics. Nat. Photonics, 8, 821-829(2014). https://doi.org/10.1038/nphoton.2014.248

    [138] T. Ozawa et al. Topological photonics. Rev. Mod. Phys., 91, 015006(2019). https://doi.org/10.1103/RevModPhys.91.015006

    [139] L. He et al. Experimental observation of topological large-area pseudo-spin-momentum-locking waveguide states with exceptional robustness. Adv. Photonics Nexus, 3, 016009(2024). https://doi.org/10.1117/1.APN.3.1.016009

    [140] P. Dreher et al. Spatiotemporal topology of plasmonic spin meron pairs revealed by polarimetric photo-emission microscopy. Adv. Photonics, 6, 066007(2024). https://doi.org/10.1117/1.AP.6.6.066007

    [141] B. C. Xu et al. Topological Landau-Zener nanophotonic circuits. Adv. Photonics, 5, 036005(2023). https://doi.org/10.1117/1.AP.5.3.036005

    [142] Z. W. Guo et al. Anomalous broadband Floquet topological metasurface with pure site rings. Adv. Photonics Nexus, 2, 016006(2023). https://doi.org/10.1117/1.APN.2.1.016006

    [143] M. Z. Hasan, C. L. Kane. Colloquium: topological insulators. Rev. Mod. Phys., 82, 3045-3067(2010). https://doi.org/10.1103/RevModPhys.82.3045

    [144] K. V. Klitzing, G. Dorda, M. Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett., 45, 494-497(1980). https://doi.org/10.1103/PhysRevLett.45.494

    [145] D. J. Thouless et al. Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49, 405-408(1982). https://doi.org/10.1103/PhysRevLett.49.405

    [146] F. D. M. Haldane. Model for a quantum hall effect without landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett., 61, 2015-2018(1988). https://doi.org/10.1103/PhysRevLett.61.2015

    [147] C. L. Kane, E. J. Mele. Quantum spin Hall effect in graphene. Phys. Rev. Lett., 95, 226801(2005). https://doi.org/10.1103/PhysRevLett.95.226801

    [148] C. L. Kane, E. J. Mele. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett., 95, 146802(2005). https://doi.org/10.1103/PhysRevLett.95.146802

    [149] J. J. Ma et al. Frequency-dependent selectively oriented edge state topological transport. Adv. Photonics Nexus, 3, 036004(2024). https://doi.org/10.1117/1.APN.3.3.036004

    [150] G.-J. Tang et al. Topological photonic crystals: physics, designs, and applications. Laser Photonics Rev., 16, 2100300(2022). https://doi.org/10.1002/lpor.202100300

    [151] D. Leykam, L. Yuan. Topological phases in ring resonators: recent progress and future prospects. Nanophotonics, 9, 4473-4487(2020). https://doi.org/10.1515/nanoph-2020-0415

    [152] B. Yang et al. Direct observation of topological surface-state arcs in photonic metamaterials. Nat. Commun., 8, 97(2017). https://doi.org/10.1038/s41467-017-00134-1

    [153] W. Gao et al. Topological photonic phase in chiral hyperbolic metamaterials. Phys. Rev. Lett., 114, 037402(2015). https://doi.org/10.1103/PhysRevLett.114.037402

    [154] C. Liu et al. Disorder-induced topological state transition in photonic metamaterials. Phys. Rev. Lett., 119, 183901(2017). https://doi.org/10.1103/PhysRevLett.119.183901

    [155] B. Yang et al. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures. Science, 359, 1013-1016(2018). https://doi.org/10.1126/science.aaq1221

    [156] H. Jia et al. Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials. Science, 363, 148-151(2019). https://doi.org/10.1126/science.aau7707

    [157] S. Xia et al. Nonlinear tuning of PT symmetry and non-Hermitian topological states. Science, 372, 72-76(2021). https://doi.org/10.1126/science.abf6873

    [158] W. Yan et al. Realization of second-order photonic square-root topological insulators. ACS Photonics, 8, 3308-3314(2021). https://doi.org/10.1021/acsphotonics.1c01171

    [159] Z. Hu et al. Nonlinear control of photonic higher-order topological bound states in the continuum. Light Sci. Appl., 10, 164(2021). https://doi.org/10.1038/s41377-021-00607-5

    [160] Z. Wang et al. Sub-symmetry-protected topological states. Nat. Phys., 19, 992-998(2023). https://doi.org/10.1038/s41567-023-02011-9

    [161] M. C. Rechtsman et al. Photonic Floquet topological insulators. Nature, 496, 196-200(2013). https://doi.org/10.1038/nature12066

    [162] L. J. Maczewsky et al. Observation of photonic anomalous Floquet topological insulators. Nat. Commun., 8, 13756(2017). https://doi.org/10.1038/ncomms13756

    [163] C. Jörg et al. Dynamic defects in photonic Floquet topological insulators. New J. Phys., 19, 083003(2017). https://doi.org/10.1088/1367-2630/aa7c82

    [164] M. C. Rechtsman et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nat. Photonics, 7, 153-158(2013). https://doi.org/10.1038/nphoton.2012.302

    [165] Z.-Q. Jiao et al. Experimentally detecting quantized Zak phases without chiral symmetry in photonic lattices. Phys. Rev. Lett., 127, 147401(2021). https://doi.org/10.1103/PhysRevLett.127.147401

    [166] L.-C. Wang et al. Edge state, localization length, and critical exponent from survival probability in topological waveguides. Phys. Rev. Lett., 129, 173601(2022). https://doi.org/10.1103/PhysRevLett.129.173601

    [167] G. Queraltó et al. Topological state engineering via supersymmetric transformations. Commun. Phys., 3, 49(2020). https://doi.org/10.1038/s42005-020-0316-4

    [168] M. S. Kirsch et al. Nonlinear second-order photonic topological insulators. Nat. Phys., 17, 995-1000(2021). https://doi.org/10.1038/s41567-021-01275-3

    [169] L. J. Maczewsky et al. Fermionic time-reversal symmetry in a photonic topological insulator. Nat. Mater., 19, 855-860(2020). https://doi.org/10.1038/s41563-020-0641-8

    [170] S. Stützer et al. Photonic topological Anderson insulators. Nature, 560, 461-465(2018). https://doi.org/10.1038/s41586-018-0418-2

    [171] O. Zilberberg et al. Photonic topological boundary pumping as a probe of 4D quantum Hall physics. Nature, 553, 59-62(2018). https://doi.org/10.1038/nature25011

    [172] E. Lustig et al. Photonic topological insulator in synthetic dimensions. Nature, 567, 356-360(2019). https://doi.org/10.1038/s41586-019-0943-7

    [173] W. Yan, B. Zhang, F. Chen. Photonic topological insulators in femtosecond laser direct-written waveguides. NPJ Nanophotonics, 1, 40(2024). https://doi.org/10.1038/s44310-024-00040-7

    [174] N. Malkova et al. Observation of optical Shockley-like surface states in photonic superlattices. Opt. Lett., 34, 1633-1635(2009). https://doi.org/10.1364/OL.34.001633

    [175] E. Lustig et al. Photonic topological insulator induced by a dislocation in three dimensions. Nature, 609, 931-935(2022). https://doi.org/10.1038/s41586-022-05129-7

    [176] T. Biesenthal et al. Fractal photonic topological insulators. Science, 376, 1114-1119(2022). https://doi.org/10.1126/science.abm2842

    [177] A. Cerjan et al. Observation of a higher-order topological bound state in the continuum. Phys. Rev. Lett., 125, 213901(2020). https://doi.org/10.1103/PhysRevLett.125.213901

    [178] M. Li et al. Fractal photonic anomalous Floquet topological insulators to generate multiple quantum chiral edge states. Light Sci. Appl., 12, 262(2023). https://doi.org/10.1038/s41377-023-01307-y

    [179] J. Noh et al. Topological protection of photonic mid-gap defect modes. Nat. Photonics, 12, 408-415(2018). https://doi.org/10.1038/s41566-018-0179-3

    [180] A. El Hassan et al. Corner states of light in photonic waveguides. Nat. Photonics, 13, 697-700(2019). https://doi.org/10.1038/s41566-019-0519-y

    [181] J. Kang et al. Observation of square-root higher-order topological states in photonic waveguide arrays. Laser Photonics Rev., 17, 2200499(2023). https://doi.org/10.1002/lpor.202200499

    [182] W. Yan et al. Photonic square-root second-order topological bound states in the continuum. Laser Photonics Rev., 18, 2400950(2024). https://doi.org/10.1002/lpor.202400950

    [183] W. Cheng et al. Observation of higher-order topological corner states in photonic two-dimensional trimer lattices. Opt. Lett., 48, 6312-6315(2023). https://doi.org/10.1364/OL.506765

    [184] W. Yan et al. Square-root higher-order topological insulators in a photonic decorated SSH lattice. Opt. Lett., 48, 3765-3768(2023). https://doi.org/10.1364/OL.498084

    [185] B. Ren et al. Observation of nonlinear disclination states. Light Sci. Appl., 12, 194(2023). https://doi.org/10.1038/s41377-023-01235-x

    [186] C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 80, 5243-5246(1998). https://doi.org/10.1103/PhysRevLett.80.5243

    [187] R. El-Ganainy et al. Non-Hermitian physics and PT symmetry. Nat. Phys., 14, 11-19(2018). https://doi.org/10.1038/nphys4323

    [188] Ş. K. Özdemir et al. Parity–time symmetry and exceptional points in photonics. Nat. Mater., 18, 783-798(2019). https://doi.org/10.1038/s41563-019-0304-9

    [189] L. Feng, R. El-Ganainy, L. Ge. Non-Hermitian photonics based on parity–time symmetry. Nat. Photonics, 11, 752-762(2017). https://doi.org/10.1038/s41566-017-0031-1

    [190] X. Zhang et al. A second wave of topological phenomena in photonics and acoustics. Nature, 618, 687-697(2023). https://doi.org/10.1038/s41586-023-06163-9

    [191] M. Kremer et al. Demonstration of a two-dimensional PT-symmetric crystal. Nat. Commun., 10, 435(2019). https://doi.org/10.1038/s41467-018-08104-x

    [192] T. Eichelkraut et al. Mobility transition from ballistic to diffusive transport in non-Hermitian lattices. Nat. Commun., 4, 2533(2013). https://doi.org/10.1038/ncomms3533

    [193] J. M. Zeuner et al. Observation of a topological transition in the bulk of a non-hermitian system. Phys. Rev. Lett., 115, 040402(2015). https://doi.org/10.1103/PhysRevLett.115.040402

    [194] S. Weimann et al. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater., 16, 433-438(2017). https://doi.org/10.1038/nmat4811

    [195] J. Kang et al. Tunable localization of higher‐order bound states in non‐hermitian optical waveguide lattices. Laser Photonics Rev., 17, 2300558(2023). https://doi.org/10.1002/lpor.202300558

    [196] W. Liu et al. Floquet parity-time symmetry in integrated photonics. Nat. Commun., 15, 946(2024). https://doi.org/10.1038/s41467-024-45226-x

    [197] A. Fritzsche et al. Parity–time-symmetric photonic topological insulator. Nat. Mater., 23, 377-382(2024). https://doi.org/10.1038/s41563-023-01773-0

    [198] Y. Sun et al. Photonic Floquet skin-topological effect. Phys. Rev. Lett., 132, 063804(2024). https://doi.org/10.1103/PhysRevLett.132.063804

    [199] S. K. Ivanov et al. Macroscopic zeno effect in a Su–Schrieffer–Heeger photonic topological insulator. Laser Photonics Rev., 17, 2300024(2023). https://doi.org/10.1002/lpor.202300024

    [200] Z. Chen, M. Segev. Highlighting photonics: looking into the next decade. eLight, 1, 2(2021). https://doi.org/10.1186/s43593-021-00002-y

    [201] J. Wang et al. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2020). https://doi.org/10.1038/s41566-019-0532-1

    [202] W. Luo et al. Recent progress in quantum photonic chips for quantum communication and internet. Light Sci. Appl., 12, 175(2023). https://doi.org/10.1038/s41377-023-01173-8

    [203] A. W. Elshaari et al. Hybrid integrated quantum photonic circuits. Nat. Photonics, 14, 285-298(2020). https://doi.org/10.1038/s41566-020-0609-x

    [204] Q. Yan et al. Quantum topological photonics. Adv. Opt. Mater., 9, 2001739(2021). https://doi.org/10.1002/adom.202001739

    [205] F. Klauck et al. Observation of PT-symmetric quantum interference. Nat. Photonics, 13, 883-887(2019). https://doi.org/10.1038/s41566-019-0517-0

    [206] Z.-K. Jiang et al. Direct observation of dynamically localized quantum optical states. Phys. Rev. Lett., 129, 173602(2022). https://doi.org/10.1103/PhysRevLett.129.173602

    [207] X.-Y. Xu et al. Quantum transport in fractal networks. Nat. Photonics, 15, 703-710(2021). https://doi.org/10.1038/s41566-021-00845-4

    [208] V. Neef et al. Three-dimensional non-Abelian quantum holonomy. Nat. Phys., 19, 30-34(2023). https://doi.org/10.1038/s41567-022-01807-5

    [209] Y. Wang et al. Direct observation of topology from single-photon dynamics. Phys. Rev. Lett., 122, 193903(2019). https://doi.org/10.1103/PhysRevLett.122.193903

    [210] M. Ehrhardt, M. Heinrich, A. Szameit. Observation-dependent suppression and enhancement of two-photon coincidences by tailored losses. Nat. Photonics, 16, 191-195(2022). https://doi.org/10.1038/s41566-021-00943-3

    [211] X.-L. Zhang et al. Non-Abelian braiding on photonic chips. Nat. Photonics, 16, 390(2022). https://doi.org/10.1038/s41566-022-00976-2

    [212] A. Blanco-Redondo et al. Topological protection of biphoton states. Science, 362, 568-571(2018). https://doi.org/10.1126/science.aau4296

    [213] F. Klauck, M. Heinrich, A. Szameit. Photonic two-particle quantum walks in Su-Schrieffer-Heeger lattices. Photonics Res., 9, A1-A7(2021). https://doi.org/10.1364/PRJ.409005

    [214] J.-L. Tambasco et al. Quantum interference of topological states of light. Sci. Adv., 4, eaat3187(2018). https://doi.org/10.1126/sciadv.aat3187

    [215] M. Ehrhardt et al. Topological Hong-Ou-Mandel interference. Science, 384, 1340-1344(2024). https://doi.org/10.1126/science.ado8192

    [216] Y.-K. Sun et al. Non-Abelian Thouless pumping in photonic waveguides. Nat. Phys., 18, 1080(2022). https://doi.org/10.1038/s41567-022-01669-x

    [217] J. Noh et al. Braiding photonic topological zero modes. Nat. Phys., 16, 989-993(2020). https://doi.org/10.1038/s41567-020-1007-5

    [218] Q. C. Liu et al. Engineering of Zeno dynamics in integrated photonics. Phys. Rev. Lett., 130, 103801(2023). https://doi.org/10.1103/PhysRevLett.130.103801

    Bin Zhang, Wenchao Yan, Feng Chen, "Recent advances in femtosecond laser direct writing of three-dimensional periodic photonic structures in transparent materials," Adv. Photon. 7, 034002 (2025)
    Download Citation