• Photonics Research
  • Vol. 6, Issue 7, 692 (2018)
Sheng-Xuan Xia, Xiang Zhai, Ling-Ling Wang*, and Shuang-Chun Wen
Author Affiliations
  • Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
  • show less
    DOI: 10.1364/PRJ.6.000692 Cite this Article Set citation alerts
    Sheng-Xuan Xia, Xiang Zhai, Ling-Ling Wang, Shuang-Chun Wen. Plasmonically induced transparency in double-layered graphene nanoribbons[J]. Photonics Research, 2018, 6(7): 692 Copy Citation Text show less
    References

    [1] A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin. Nano-optics of surface plasmon polaritons. Phys. Rep., 408, 131-314(2005).

    [2] H. Raether. Surface Plasmons on Smooth Surfaces(1988).

    [3] P. Berini. Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys. Rev. B, 61, 10484-10503(2000).

    [4] O. Nicoletti, F. de La Peña, R. K. Leary, D. J. Holland, C. Ducati, P. A. Midgley. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature, 502, 80-84(2013).

    [5] Q. Bao, K. P. Loh. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 6, 3677-3694(2012).

    [6] A. N. Grigorenko, M. Polini, K. S. Novoselov. Graphene plasmonics. Nat. Photonics, 6, 749-758(2012).

    [7] A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater., 6, 183-191(2007).

    [8] D. K. Efetov, P. Kim. Controlling electron–phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett., 105, 256805(2010).

    [9] F. H. Koppens, D. E. Chang, F. J. García de Abajo. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett., 11, 3370-3377(2011).

    [10] Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, F. J. García de Abajo. Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano, 7, 2388-2395(2013).

    [11] L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechte, X. Liang, A. Zettl, Y. R. Shen, F. Wang. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol., 6, 630-634(2011).

    [12] S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, S. C. Wen. Multi-band perfect plasmonic absorptions using rectangular graphene gratings. Opt. Lett., 42, 3052-3055(2017).

    [13] W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, S. Link. A plasmonic Fano switch. Nano Lett., 12, 4977-4982(2012).

    [14] Z. Chen, X. Shan, Y. Guan, S. Wang, J. J. Zhu, N. Tao. Imaging local heating and thermal diffusion of nanomaterials with plasmonic thermal microscopy. ACS Nano, 9, 11574-11581(2015).

    [15] H. Nasari, M. S. Abrishamian, P. Berini. Nonlinear optics of surface plasmon polaritons in subwavelength graphene ribbon resonators. Opt. Express, 24, 708-723(2016).

    [16] S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, S. C. Wen. Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers. Opt. Express, 24, 17886-17899(2016).

    [17] X. Zhao, L. Zhu, C. Yuan, J. Yao. Tunable plasmon-induced transparency in a grating-coupled double-layer graphene hybrid system at far-infrared frequencies. Opt. Lett., 41, 5470-5473(2016).

    [18] B. Peng, S. K. Ozdemir, W. Chen, F. Nori, L. Yang. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun., 5, 5082(2014).

    [19] C. Wu, A. B. Khanikaev, G. Shvets. Broadband slow light metamaterial based on a double-continuum Fano resonance. Phys. Rev. Lett., 106, 107403(2011).

    [20] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, M. D. Lukin. Storage of light in atomic vapor. Phys. Rev. Lett., 86, 783-786(2001).

    [21] T. H. Qiu. Electromagnetically induced holographic imaging in hybrid artificial molecule. Opt. Express, 23, 24537-24546(2015).

    [22] S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett., 101, 047401(2008).

    [23] J. Q. Liu, Y. X. Zhou, L. Li, P. Wang, A. V. Zayats. Controlling plasmon-induced transparency of graphene metamolecules with external magnetic field. Opt. Express, 23, 12524-12532(2015).

    [24] Z. Bai, G. Huang. Plasmon dromions in a metamaterial via plasmon-induced transparency. Phys. Rev. A, 93, 013818(2016).

    [25] H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, J. Tian. Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips. Appl. Phys. Lett., 103, 203112(2013).

    [26] J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, H. Zhang. Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows. Sci. Rep., 4, 6128(2014).

    [27] S. Y. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, C. Xu. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon, 126, 271-278(2018).

    [28] H. Yan, T. Low, F. Guinea, F. Xia, P. Avouris. Tunable phonon-induced transparency in bilayer graphene nanoribbons. Nano Lett., 14, 4581-4586(2014).

    [29] L. Y. He, T. J. Wang, Y. P. Gao, C. Cao, C. Wang. Discerning electromagnetically induced transparency from Autler–Townes splitting in plasmonic waveguide and coupled resonators system. Opt. Express, 23, 23817-23826(2015).

    [30] Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, S. Xia. Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings. Europhys. Lett., 111, 34004(2015).

    [31] H. J. Li, L. L. Wang, X. Zhai. Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings. IEEE Photon. Technol. Lett., 28, 1454-1457(2016).

    [32] Y. H. Guo, L. S. Yan, W. Pan, B. Luo, K. H. Wen, Z. Guo, X. G. Luo. Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators. Opt. Express, 20, 24348-24355(2012).

    [33] X. Shi, D. Z. Han, Y. Y. Dai, Z. F. Yu, Y. Sun, H. Chen, X. H. Liu, J. Zi. Plasmonic analog of electromagnetically induced transparency in nanostructure graphene. Opt. Express, 21, 28438-28443(2013).

    [34] C. Hu, L. Wang, Q. Lin, X. Zhai, X. Ma, T. Han, J. Du. Tunable double transparency windows induced by single subradiant element in coupled graphene plasmonic nanostructure. Appl. Phys. Express, 9, 052001(2016).

    [35] Z. Dong, C. Sun, J. Si, X. Deng. Tunable polarization-independent plasmonically induced transparency based on metal-graphene metasurface. Opt. Express, 25, 12251-12259(2017).

    [36] W. Wang, Y. Li, P. Xu, Z. Chen, J. Chen, J. Qian, J. Qi, Q. Sun, J. Xu. Polarization-insensitive plasmonic-induced transparency in planar metamaterial consisting of a regular triangle and a ring. J. Opt., 16, 125013(2014).

    [37] X. Zhang, Q. Li, W. Cao, J. Gu, R. Singh, Z. Tian, J. Han, W. Zhang. Polarization-independent plasmon-induced transparency in a fourfold symmetric terahertz metamaterial. IEEE J. Sel. Top. Quantum Electron., 19, 8400707(2013).

    [38] X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, J. Tian. Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials. Appl. Phys. Lett., 101, 143105(2012).

    [39] S. Thongrattanasiri, A. Manjavacas, F. J. García de Abajo. Quantum finite-size effects in graphene plasmons. ACS Nano, 6, 1766-1775(2012).

    [40] J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, F. J. García de Abajo. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano, 6, 431-440(2011).

    [41] F. J. García de Abajo. Graphene plasmonics: challenges and opportunities. ACS Photon., 1, 135-152(2014).

    [42] F. J. García de Abajo. Multiple excitation of confined graphene plasmons by single free electrons. ACS Nano, 7, 11409-11419(2013).

    [43] R. Yu, J. D. Cox, J. R. Saavedra, F. J. García de Abajo. Analytical modeling of graphene plasmons. ACS Photon., 4, 3106-3114(2017).

    [44] I. Silveiro, J. M. P. Ortega, F. J. García de Abajo. Quantum nonlocal effects in individual and interacting graphene nanoribbons. Light: Sci. Appl., 4, e241(2015).

    [45] D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, H. Altug. Double-layer graphene for enhanced tunable infrared plasmonics. Light: Sci. Appl., 6, e16277(2017).

    [46] D. B. Farmer, D. Rodrigo, T. Low, P. Avouris. Plasmon–plasmon hybridization and bandwidth enhancement in nanostructured graphene. Nano Lett., 15, 2582-2587(2015).

    [47] W. Gao, J. Shu, C. Qiu, Q. Xu. Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano, 6, 7806-7813(2012).

    [48] Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, N. J. Halas. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett., 14, 299-304(2013).

    [49] S. Balci, O. Balci, N. Kakenov, F. B. Atar, C. Kocabas. Dynamic tuning of plasmon resonance in the visible using graphene. Opt. Lett., 41, 1241-1244(2016).

    [50] S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, S. C. Wen. Excitation of crest and trough surface plasmon modes in in-plane bended graphene nanoribbons. Opt. Express, 24, 427-436(2016).

    [51] S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, S. C. Wen. Localized plasmonic field enhancement in shaped graphene nanoribbons. Opt. Express, 24, 16336-16348(2016).

    [52] J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, X. Luo. Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range. Opt. Express, 24, 5376-5386(2016).

    [53] F. Hu, Y. Luan, Z. Fei, I. Z. Palubski, M. D. Goldflam, S. Dai, J.-S. Wu, K. W. Post, G. C. A. M. Janssen, M. M. Fogler, D. N. Basov. Imaging the localized plasmon resonance modes in graphene nanoribbons. Nano Lett., 17, 5423-5428(2017).

    [54] X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, H. D. Drew. Plasmon-enhanced terahertz photodetection in graphene. Nano Lett., 15, 4295-4302(2015).

    [55] S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, S. C. Wen. Graphene surface plasmons with dielectric metasurfaces. J. Lightwave Technol., 35, 4553-4558(2017).

    [56] G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, X. J. Shang. Actively tunable Fano resonance based on a T-shaped graphene nanodimer. Plasmonics, 11, 381-387(2016).

    [57] Q. Lin, X. Zhai, L. L. Wang, X. Luo, G. D. Liu, J. P. Liu, S. X. Xia. A novel design of plasmon-induced absorption sensor. Appl. Phys. Express, 9, 062002(2016).

    [58] M. Wen, L. Wang, X. Zhai, Q. Lin, S. Xia. Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide. Europhys. Lett., 116, 44004(2017).

    [59] P. N. Huang, S. X. Xia, G. L. Fu, M. Z. Liang, M. Qin, X. Zhai, L. L. Wang. Tunable plasmon-induced absorption effects in a graphene-based waveguide coupled with graphene ring resonators. Opt. Commun., 410, 148-152(2018).

    [60] D. Sarid, W. Challener. Modern Introduction to Surface Plasmons: Theory, Mathematica Modeling, and Applications(2010).

    [61] O. V. Shapoval, J. S. G. Diaz, J. P. Carrier, J. R. Mosig, A. I. Nosich. Integral equation analysis of plane wave scattering by coplanar graphene strip gratings in the THz range. IEEE Trans. Terahertz Sci. Technol., 3, 666-674(2013).

    [62] S. Thongrattanasiri, F. H. L. Koppens, F. J. García de Abajo. Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett., 108, 047401(2012).

    [63] H. Lu, B. P. Cumming, M. Gu. Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths. Opt. Lett., 40, 3647-3650(2015).

    CLP Journals

    [1] Zhaojian Zhang, Junbo Yang, Te Du, Xinpeng Jiang. Topological multipolar corner state in a supercell metasurface and its interplay with two-dimensional materials[J]. Photonics Research, 2022, 10(4): 855

    Sheng-Xuan Xia, Xiang Zhai, Ling-Ling Wang, Shuang-Chun Wen. Plasmonically induced transparency in double-layered graphene nanoribbons[J]. Photonics Research, 2018, 6(7): 692
    Download Citation