• Photonics Research
  • Vol. 6, Issue 4, 238 (2018)
Mulong Liu1、2, Leiran Wang1、2、*, Qibing Sun1, Siqi Li1、2, Zhiqiang Ge1、2, Zhizhou Lu1、2, Weiqiang Wang1、2, Guoxi Wang1、2, Wenfu Zhang1、2、3, Xiaohong Hu1, and Wei Zhao1、2
Author Affiliations
  • 1State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3e-mail: wfuzhang@opt.ac.cn
  • show less
    DOI: 10.1364/PRJ.6.000238 Cite this Article Set citation alerts
    Mulong Liu, Leiran Wang, Qibing Sun, Siqi Li, Zhiqiang Ge, Zhizhou Lu, Weiqiang Wang, Guoxi Wang, Wenfu Zhang, Xiaohong Hu, Wei Zhao. Influences of multiphoton absorption and free-carrier effects on frequency-comb generation in normal dispersion silicon microresonators[J]. Photonics Research, 2018, 6(4): 238 Copy Citation Text show less
    References

    [1] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [2] A. A. Savchenkov, A. B. Matsko, L. Maleki. On frequency combs in monolithic resonators. Nanophotonics, 5, 363-391(2016).

    [3] M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, K. J. Vahala. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).

    [4] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [5] A. A. Savchenkov, V. S. Ilchenko, F. Di Teodoro, P. M. Belden, W. T. Lotshaw, A. B. Matsko, L. Maleki. Generation of Kerr combs centered at 4.5  μm in crystalline microresonators pumped with quantum-cascade lasers. Opt. Lett., 40, 3468-3471(2015).

    [6] C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, T. J. Kippenberg. Mid-infrared optical frequency combs at 2.5  μm based on crystalline microresonators. Nat. Commun., 4, 1345(2013).

    [7] B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, M. Lončar. Diamond nonlinear photonics. Nat. Photonics, 8, 369-374(2014).

    [8] S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y. H. Lai, X. Yi, K. Vahala. Towards visible soliton microcomb generation. Nat. Commun., 8, 1295(2017).

    [9] J. Li, H. Lee, T. Chen, K. J. Vahala. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett., 109, 233901(2012).

    [10] H. Jung, C. Xiong, K. Y. Fong, X. Zhang, H. X. Tang. Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett., 38, 2810-2813(2013).

    [11] H. Jung, R. Stoll, X. Guo, D. Fischer, H. X. Tang. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator. Optica, 1, 396-399(2014).

    [12] M. Karpov, M. H. P. Pfeiffer, T. J. Kippenberg. Photonic chip-based soliton frequency combs covering the biological imaging window(2017).

    [13] Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, K. Srinivasan. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica, 4, 193-203(2017).

    [14] L. Wang, L. Chang, N. Volet, M. H. P. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, J. E. Bowers. Frequency comb generation in the green using silicon nitride microresonators. Laser Photon. Rev., 10, 631-638(2016).

    [15] A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras. Silicon-chip mid-infrared frequency comb generation. Nat. Commun., 6, 6299(2015).

    [16] M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, A. L. Gaeta. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica, 3, 854-860(2016).

    [17] I. H. Agha, Y. Okawachi, A. L. Gaeta. Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres. Opt. Express, 17, 16209-16215(2009).

    [18] K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, M. Lipson. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett., 40, 4823-4826(2015).

    [19] A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, Y. K. Chembo. Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators. IEEE Photon. J., 5, 6100409(2013).

    [20] W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, D. Seidel, A. B. Matsko, L. Maleki. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD. Opt. Lett., 39, 2920-2923(2014).

    [21] X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, A. M. Weiner. Normal-dispersion microcombs enabled by controllable mode interactions. Laser Photon. Rev., 9, L23-L28(2015).

    [22] S. W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D. L. Kwong, L. Maleki, C. W. Wong. Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. Phys. Rev. Lett., 114, 053901(2015).

    [23] X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, A. M. Weiner. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photonics, 9, 594-600(2015).

    [24] D. C. Harris. Durable 3-5  μm transmitting infrared window materials. Infrared Phys. Technol., 39, 185-201(1998).

    [25] X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Campenhout, P. Verheyen, G. Roelkens, R. Baets, B. Luther-Davies. Nonlinear absorption and refraction in crystalline silicon in the mid-infrared. Laser Photon. Rev., 7, 1054-1064(2013).

    [26] T. Hansson, D. Modotto, S. Wabnitz. Mid-infrared soliton and Raman frequency comb generation in silicon microrings. Opt. Lett., 39, 6747-6750(2014).

    [27] R. K. W. Lau, M. R. E. Lamont, Y. Okawachi, A. L. Gaeta. Effects of multiphoton absorption on parametric comb generation in silicon microresonators. Opt. Lett., 40, 2778-2781(2015).

    [28] D. V. Strekalov, N. Yu. Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump. Phys. Rev. A, 79, 041805(2009).

    [29] T. Hansson, S. Wabnitz. Bichromatically pumped microresonator frequency combs. Phys. Rev. A, 90, 013811(2014).

    [30] A. D. Bristow, N. Rotenberg, H. M. van Driel. Two-photon absorption and Kerr coefficients of silicon for 850-2200  nm. Appl. Phys. Lett., 90, 191104(2007).

    [31] M. Dinu, F. Quochi, H. Garcia. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett., 82, 2954-2956(2003).

    [32] A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, A. L. Gaeta. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Express, 14, 4357-4362(2006).

    [33] R. Soref, B. Bennett. Electrooptical effects in silicon. IEEE J. Quantum Electron., 23, 123-129(1987).

    [34] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, T. J. Kippenberg. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2014).

    [35] X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, K. Vahala. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2, 1078-1085(2015).

    [36] E. Lucas, H. Guo, J. D. Jost, M. Karpov, T. J. Kippenberg. Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators. Phys. Rev. A, 95, 043822(2017).

    [37] S. Pearl, N. Rotenberg, H. M. van Driel. Three photon absorption in silicon for 2300-3300  nm. Appl. Phys. Lett., 93, 131102(2008).

    [38] F. Gholami, S. Zlatanovic, A. Simic, L. Liu, D. Borlaug, N. Alic, M. P. Nezhad, Y. Fainman, S. Radic. Third-order nonlinearity in silicon beyond 2350  nm. Appl. Phys. Lett., 99, 081102(2011).

    [39] R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali. Influence of nonlinear absorption on Raman amplification in silicon waveguides. Opt. Express, 12, 2774-2780(2004).

    [40] X. Xue, P. H. Wang, Y. Xuan, M. Qi, A. M. Weiner. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photon. Rev., 11, 1600276(2017).

    [41] A. G. Griffith, M. Yu, Y. Okawachi, J. Cardenas, A. Mohanty, A. L. Gaeta, M. Lipson. Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects. Opt. Express, 24, 13044-13050(2016).

    [42] G. Lihachev, M. L. Gorodetsky, T. J. Kippenberg, V. E. Lobanov. Frequency combs and platicons in optical microresonators with normal GVD. Opt. Express, 23, 7713-7721(2015).

    CLP Journals

    [1] Xueying Jin, Xin Xu, Haoran Gao, Keyi Wang, Haojie Xia, Liandong Yu. Controllable two-dimensional Kerr and Raman–Kerr frequency combs in microbottle resonators with selectable dispersion[J]. Photonics Research, 2021, 9(2): 171

    Mulong Liu, Leiran Wang, Qibing Sun, Siqi Li, Zhiqiang Ge, Zhizhou Lu, Weiqiang Wang, Guoxi Wang, Wenfu Zhang, Xiaohong Hu, Wei Zhao. Influences of multiphoton absorption and free-carrier effects on frequency-comb generation in normal dispersion silicon microresonators[J]. Photonics Research, 2018, 6(4): 238
    Download Citation