• Photonics Research
  • Vol. 9, Issue 2, 193 (2021)
Xiutao Lou1, Yabo Feng2, Shunhu Yang2, and Yongkang Dong2、*
Author Affiliations
  • 1School of Physics, Harbin Institute of Technology, Harbin 150001, China
  • 2National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
  • show less
    DOI: 10.1364/PRJ.411870 Cite this Article Set citation alerts
    Xiutao Lou, Yabo Feng, Shunhu Yang, Yongkang Dong. Ultra-wide-dynamic-range gas sensing by optical pathlength multiplexed absorption spectroscopy[J]. Photonics Research, 2021, 9(2): 193 Copy Citation Text show less
    References

    [1] M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, J. Ye. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science, 311, 1595-1599(2006).

    [2] S. M. Link, D. J. H. C. Maas, D. Waldburger, U. Keller. Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser. Science, 356, 1164-1168(2017).

    [3] S. X. Yang, C. B. Jiang, S. H. Wei. Gas sensing in 2D materials. Appl. Phys. Rev., 4, 021304(2017).

    [4] C. S. Goldenstein, R. M. Spearrin, J. B. Jeffries, R. K. Hanson. Infrared laser-absorption sensing for combustion gases. Prog. Energ. Combust., 60, 132-176(2017).

    [5] C. R. Webster, P. R. Mahaffy, S. K. Atreya, G. J. Flesch, M. A. Mischna, P. Y. Meslin, K. A. Farley, P. G. Conrad, L. E. Christensen, A. A. Pavlov, J. Martin-Torres, M. P. Zorzano, T. H. McConnochie, T. Owen, J. L. Eigenbrode, D. P. Glavin, A. Steele, C. A. Malespin, P. D. Archer, B. Sutter, P. Coll, C. Freissinet, C. P. McKay, J. E. Moores, S. P. Schwenzer, J. C. Bridges, R. Navarro-Gonzalez, R. Gellert, M. T. Lemmon, M. S. Team. Mars methane detection and variability at Gale crater. Science, 347, 415-417(2015).

    [6] J. Hodgkinson, R. P. Tatam. Optical gas sensing: a review. Meas. Sci. Technol., 24, 012004(2013).

    [7] X. Liu, S. T. Cheng, H. Liu, S. Hu, D. Q. Zhang, H. S. Ning. A survey on gas sensing technology. Sensors, 12, 9635-9665(2012).

    [8] M. A. Bolshov, Y. A. Kuritsyn, Y. V. Romanovskii. Tunable diode laser spectroscopy as a technique for combustion diagnostics. Spectrochim. Acta B, 106, 45-66(2015).

    [9] P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, V. Spagnolo. Recent advances in quartz enhanced photoacoustic sensing. Appl. Phys. Rev., 5, 011106(2018).

    [10] T. V. Dinh, I. Y. Choi, Y. S. Son, J. C. Kim. A review on non-dispersive infrared gas sensors: improvement of sensor detection limit and interference correction. Sens. Actuators B, 231, 529-538(2016).

    [11] A. Dey. Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B, 229, 206-217(2018).

    [12] S. Manakasettharn, A. Takahashi, T. Kawamoto, K. Noda, Y. Sugiyama, T. Nakamura. Highly sensitive and exceptionally wide dynamic range detection of ammonia gas by indium hexacyanoferrate nanoparticles using FTIR spectroscopy. Anal. Chem., 90, 4856-4862(2018).

    [13] A. Sepman, Y. Ogren, Z. C. Qu, H. Wiinikka, F. M. Schmidt. Tunable diode laser absorption spectroscopy diagnostics of potassium, carbon monoxide, and soot in oxygen-enriched biomass combustion close to stoichiometry. Energy Fuels, 33, 11795-11803(2019).

    [14] O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, V. Ebert. VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines. Opt. Express, 21, 19951-19965(2013).

    [15] L. Dong, F. K. Tittel, C. G. Li, N. P. Sanchez, H. P. Wu, C. T. Zheng, Y. J. Yu, A. Sampaolo, R. J. Griffin. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing. Opt. Express, 24, A528-A535(2016).

    [16] V. Zeninari, B. Parvitte, D. Courtois, V. A. Kapitanov, Y. N. Ponomarev. Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor. Infrared Phys. Technol., 44, 253-261(2003).

    [17] Q. Wang, Z. Wang, W. Ren, P. Patimisco, A. Sampaolo, V. Spagnolo. Fiber-ring laser intracavity QEPAS gas sensor using a 7.2  kHz quartz tuning fork. Sens. Actuators B, 268, 512-518(2018).

    [18] W. Jin, Y. C. Cao, F. Yang, H. L. Ho. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nat. Commun., 6, 6767(2015).

    [19] P. C. Zhao, Y. Zhao, H. H. Bao, H. L. Ho, W. Jin, S. C. Fan, S. F. Gao, Y. Y. Wang, P. Wang. Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber. Nat. Commun., 11, 847(2020).

    [20] S. Hanf, T. Bogozi, R. Keiner, T. Frosch, J. Popp. Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath. Anal. Chem., 87, 982-988(2015).

    [21] Y. Qi, Y. Zhao, H. H. Bao, W. Jin, H. L. Ho. Nanofiber enhanced stimulated Raman spectroscopy for ultra-fast, ultra-sensitive hydrogen detection with ultra-wide dynamic range. Optica, 6, 570-576(2019).

    [22] M. Nikodem, G. Wysocki. Measuring optically thick molecular samples using chirped laser dispersion spectroscopy. Opt. Lett., 38, 3834-3837(2013).

    [23] A. Cygan, P. Wcislo, S. Wojtewicz, G. Kowzan, M. Zaborowski, D. Charczun, K. Bielska, R. S. Trawinski, R. Ciurylo, P. Maslowski, D. Lisak. High-accuracy and wide dynamic range frequency-based dispersion spectroscopy in an optical cavity. Opt. Express, 27, 21810-21822(2019).

    [24] I. M. Craig, B. D. Cannon, M. S. Taubman, B. E. Bernacki, R. D. Stahl, J. T. Schiffern, T. L. Myers, M. C. Phillips. Sensing of gaseous HF at low part-per-trillion levels using a tunable 2.5-μm diode laser spectrometer operating at ambient pressure. Appl. Phys. B, 120, 505-515(2015).

    [25] I. Galli, S. Bartalini, R. Ballerini, M. Barucci, P. Cancio, M. De Pas, G. Giusfredi, D. Mazzotti, N. Akikusa, P. De Natale. Spectroscopic detection of radiocarbon dioxide at parts-per-quadrillion sensitivity. Optica, 3, 385-388(2016).

    [26] H. Sumizawa, H. Yamada, K. Tonokura. Real-time monitoring of nitric oxide in diesel exhaust gas by mid-infrared cavity ring-down spectroscopy. Appl. Phys. B, 100, 925-931(2010).

    [27] F. Dong, C. Junaedi, S. Roychoudhury, M. Gupta. Rapid, online quantification of H2S in JP-8 fuel reformate using near-infrared cavity-enhanced laser absorption spectroscopy. Anal. Chem., 83, 4132-4136(2011).

    [28] I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, G. Giusfredi. Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection. Phys. Rev. Lett., 107, 270802(2011).

    [29] A. Klein, O. Witzel, V. Ebert. Rapid, time-division multiplexed, direct absorption- and wavelength modulation-spectroscopy. Sensors, 14, 21497-21513(2014).

    [30] Z. Wang, Y. J. Du, Y. J. Ding, Z. M. Peng. A wide-range and calibration-free spectrometer which combines wavelength modulation and direct absorption spectroscopy with cavity ringdown spectroscopy. Sensors, 20, 585(2020).

    [31] J. Cousin, W. D. Chen, M. Fourmentin, E. Fertein, D. Boucher, F. Cazier, H. Nouali, D. Dewaele, M. Douay, L. S. Rothman. Laser spectroscopic monitoring of gas emission and measurements of the 13C/12C isotope ratio in CO2 from a wood-based combustion. J. Quant. Spectrosc. Radiat. Transf., 109, 151-167(2008).

    [32] M. A. Zondlo, M. E. Paige, S. M. Massick, J. A. Silver. Vertical cavity laser hygrometer for the National Science Foundation Gulfstream-V aircraft. J. Geophys. Res. Atmos., 115, D20309(2010).

    [33] A. Pogány, S. Wagner, O. Werhahn, V. Ebert. Development and metrological characterization of a tunable diode laser absorption spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor. Appl. Spectrosc., 69, 257-268(2015).

    [34] J. Altmann, R. Baumgart, C. Weitkamp. Two-mirror multipass absorption cell. Appl. Opt., 20, 995-999(1981).

    [35] J. B. Mcmanus, P. L. Kebabian, W. S. Zahniser. Astigmatic mirror multipass absorption cells for long-path-length spectroscopy. Appl. Opt., 34, 3336-3348(1995).

    [36] J. A. Silver. Simple dense-pattern optical multipass cells. Appl. Opt., 44, 6545-6556(2005).

    [37] R. M. Garner, A. N. Dharamsi, M. A. Khan. Ultra-sensitive probe of spectral line structure and detection of isotopic oxygen. Appl. Phys. B, 124, 15(2018).

    [38] B. Tuzson, M. Mangold, H. Looser, A. Manninen, L. Emmenegger. Compact multipass optical cell for laser spectroscopy. Opt. Lett., 38, 257-259(2013).

    [39] M. Dong, C. T. Zheng, D. Yao, G. Q. Zhong, S. Z. Miao, W. L. Ye, Y. D. Wang, F. K. Tittel. Double-range near-infrared acetylene detection using a dual spot-ring Herriott cell (DSR-HC). Opt. Express, 26, 12081-12091(2018).

    [40] D. J. Lum, S. H. Knarr, J. C. Howell. Frequency-modulated continuous-wave LiDAR compressive depth-mapping. Opt. Express, 26, 15420-15435(2018).

    [41] T. Hariyama, P. A. M. Sandborn, M. Watanabe, M. C. Wu. High-accuracy range-sensing system based on FMCW using low-cost VCSEL. Opt. Express, 26, 9285-9297(2018).

    [42] X. T. Lou, C. Chen, Y. B. Feng, Y. K. Dong. Simultaneous measurement of gas absorption spectra and optical path lengths in a multipass cell by FMCW interferometry. Opt. Lett., 43, 2872-2875(2018).

    [43] X. T. Lou, Y. B. Feng, C. Chen, Y. K. Dong. Multi-point spectroscopic gas sensing based on coherent FMCW interferometry. Opt. Express, 28, 9014-9026(2020).

    [44] I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, E. J. Zak. The HITRAN 2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf., 203, 3-69(2017).

    [45] S. M. Chernin. Development of optical multipass matrix systems. J. Mod. Opt., 48, 619-632(2001).

    [46] J. B. McManus, M. S. Zahniser, D. D. Nelson. Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number. Appl. Opt., 50, A74-A85(2011).

    CLP Journals

    [1] Jian Li, Xinxin Zhou, Yang Xu, Lijun Qiao, Jianzhong Zhang, Mingjiang Zhang. Slope-assisted Raman distributed optical fiber sensing[J]. Photonics Research, 2022, 10(1): 205

    Xiutao Lou, Yabo Feng, Shunhu Yang, Yongkang Dong. Ultra-wide-dynamic-range gas sensing by optical pathlength multiplexed absorption spectroscopy[J]. Photonics Research, 2021, 9(2): 193
    Download Citation