• Laser & Optoelectronics Progress
  • Vol. 55, Issue 4, 041602 (2018)
Lu Zhou, Guozhong Zhao*, and Yonghua Li
Author Affiliations
  • Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048, China
  • show less
    DOI: 10.3788/LOP55.041602 Cite this Article Set citation alerts
    Lu Zhou, Guozhong Zhao, Yonghua Li. Broadband Terahertz Polarization Converter Based on L-Shaped Metamaterial[J]. Laser & Optoelectronics Progress, 2018, 55(4): 041602 Copy Citation Text show less
    References

    [1] Liu Y, Zhao G Z, Shen Y C. Polarization imaging detection based on the continuous terahertz wave[J]. Chinese Journal of Lasers, 43, 0111001(2016).

    [2] Sun Y R, Shi T L, Liu J J et al. Terahertz label-free bio-sensing with EIT-like metamaterials[J]. Acta Optica Sinica, 36, 0328001(2016).

    [3] Geng L, Xie Y N, Yuan Y. Graphene-based antenna with reconfigurable radiation pattern in terahertz[J]. Laser& Optoelectronics Progress, 54, 031602(2017).

    [4] Chen C Y, Tsai T R, Pan C L et al. Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals[J]. Applied Physics Letters, 83, 4497-4499(2003). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4871138

    [5] Rutz F, Hasek T, Koch M et al. Terahertz birefringence of liquid crystal polymers[J]. Applied Physics Letters, 89, 221911(2006). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4823476

    [6] Withayachumnankul W, Abbott D. Metamaterials in the terahertz regime[J]. IEEE Photonics Journal, 1, 99-118(2009). http://ieeexplore.ieee.org/document/5130235

    [7] Cong L Q, Cao W, Zhang X Q et al. A perfect metamaterial polarization rotator[J]. Applied Physics Letters, 103, 171107(2013). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6644784

    [8] Cheng H, Chen S Q, Yu P et al. Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial[J]. Applied Physics Letters, 103, 223102(2013). http://scitation.aip.org/content/aip/journal/apl/103/22/10.1063/1.4833757

    [9] Lévesque Q, Makhsiyan M, Bouchon P et al. Plasmonic planar antenna for wideband and efficient linear polarization conversion[J]. Applied Physics Letters, 104, 111105(2014). http://ieeexplore.ieee.org/xpl/articledetails.jsp?arnumber=6775229

    [10] Ma H F, Wang G Z, Kong G S et al. Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces[J]. Optical Materials Express, 4, 1717-1724(2014). http://www.opticsinfobase.org/abstract.cfm?URI=ome-4-8-1717

    [11] Jiang S C, Xiong X, Sarriugarte P et al. Tuning the polarization state of light via time retardation with a microstructured surface[J]. Physical Review B, 88, 161104(2013). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.88.161104

    [12] Yu J B, Ma H, Wang J F et al. High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators[J]. Acta Physica Sinica, 64, 0178101(2015).

    [13] Hao J M, Yuan Y, Ran L X et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 99, 063908(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000099000006063908000001&idtype=cvips&gifs=yes

    [14] Sun W J, He Q, Hao J M et al. A transparent metamaterial to manipulate electromagnetic wave polarizations[J]. Optics Letters, 36, 927-929(2011). http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-6-927

    [15] Wu L, Yang Z Y, Cheng Y Z et al. Circular polarization converters based on bi-layered asymmetrical split ring metamaterials[J]. Applied Physics A, 116, 643-648(2014). http://link.springer.com/article/10.1007/s00339-014-8252-3

    [16] Yong Z C, Withawat W, Aditi U et al. Ultrabroadband reflective polarization convertor for terahertz waves[J]. Applied Physics Letters, 105, 181111(2014). http://scitation.aip.org/content/aip/journal/apl/105/18/10.1063/1.4901272

    [17] Li M, Lan F, Yang Z Q et al. Broadband and highly efficient sub-THz reflective polarization converter based on Z-shaped metasurface[C]. 6 th International Conference on Mechatronics, Materials, Biotechnology and Environment, 427-432(2016).

    [18] Mutlu M, Ozbay E. A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling[J]. Applied Physics Letters, 100, 051909(2012). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6146226

    [19] Wu J F, Sun M Z, Zhang C M. The relationship between resonant frequency band and cell size in left-handed materials[J]. Acta Physica Sinica, 58, 3844-3847(2009).

    [20] Ao T H, Xu X D, Huang R et al. Control of terahertz response properties of metamaterials by dielectric layer[J]. Journal of Infrared and Millimeter Waves, 34, 333-339(2015).

    Lu Zhou, Guozhong Zhao, Yonghua Li. Broadband Terahertz Polarization Converter Based on L-Shaped Metamaterial[J]. Laser & Optoelectronics Progress, 2018, 55(4): 041602
    Download Citation