• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 1, 108 (2021)
Zhongzheng ZHANG1、2、*, Chunhong ZHANG1、2, Wanjun YAN2、3, and Xinmao QIN2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2021.01.015 Cite this Article
    ZHANG Zhongzheng, ZHANG Chunhong, YAN Wanjun, QIN Xinmao. Influence of doping on photoelectric properties of new two-dimensional material phosphorene[J]. Chinese Journal of Quantum Electronics, 2021, 38(1): 108 Copy Citation Text show less
    References

    [1] Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.

    [2] Du Y L, Ou Yang C Y, Shi S Q, et al. Ab initio studies on atomic and electronic structures of black phosphorus[J]. Journal of Applied Physics, 2010, 107: 093718.

    [3] Lu W L, Nan H Y, Hong J H, et al. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization[J]. Nano Research, 2014, 7: 853-859.

    [4] Wei Q, Peng X H. Superior mechanical flexibility of phosphorene and few-layer black phosphorus[J]. Applied Physics Letters, 2014, 104: 251915.

    [5] Jiang J W, Park H S. Negative poisson’s ratio in single-layer black phosphorus[J]. Nature Communications, 2014, 5: 4727.

    [6] Rodin A S, Carvalho A, Castro Neto A H. Strain-induced gap modification in black phosphorus[J]. Physical Review Letters, 2014, 112: 176801.

    [7] Peng X H, Wei Q, Copple A. Strain-engineered direct-indirect band gap NSFC 2017 transition and its mechanism in two-dimensional phosphorene[J]. Physical Review B, 2014, 90: 085402.

    [8] Liu H, Neal A T, Zhu Z, et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041.

    [9] Cai Y Q, Ke Q Q, Zhang G, et al. Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene[J]. Journal of Physical Chemistry C, 2015, 119: 3102-3110.

    [10] Hu T, Hong J S. First-principles study of metal adatom adsorption on black phosphorene[J]. Journal of Physical Chemistry C, 2015, 119: 8199-8207.

    [11] Jing Y, Tang Q, He P, et al. Small molecules make big differences: Molecular doping effects on electronic and optical properties of phosphorene[J]. Nanotechnology, 2015, 26: 095201.

    [12] He Y Y, Xia F F, Shao Z B, et al. Surface charge transfer doping of monolayer phosphorene via molecular adsorption[J]. Journal of Physical Chemistry Letters, 2015, 6: 4701-4710.

    [13] Srivastava P, Hembram K P S S, Mizuseki H, et al. Tuning the electronic and magnetic properties of phosphorene by vacancies and adatoms[J]. Journal of Physical Chemistry C, 2015, 119: 6530-6538.

    [14] Huang W J. Electronic Structures and Transport Properties of Doped Phosphorene[D]. Chengdu: University of Electronic Science and Technology, 2016.

    [15] Khan I, Hong J S. Manipulation of magnetic state in phosphorene layer by nonmagnetic impurity doping[J]. New Journal of Physics, 17: 023056.

    [16] Seixas L, Carvalho A, Castro Neto A H. Atomically thin dilute magnetism in Co-doped phosphorene[J]. Physical Review B, 2015, 91: 155138.

    [17] Xu L, Tang C Q, Qian J. The first-principles study of absorption spectrum of C-doped anatase TiO2[J]. Acta Physica Sinica, 2010, 59(4): 2721-2727.

    [18] Zhang C H, Yan W J, Zhou S Y, et al. The study of electronic structure and optical properties for C-doped β-FeSi2[J]. Journal of Atomic and Molecular Physics, 2013, 30(4): 683-688.

    [19] Guan L, Li Q, Zhao Q X, et al. First-principles study of the optical properties of ZnO doped with Al, Ni[J]. Acta Physica Sinica, 2009, 58(8): 5624-5631.

    [20] Yao Q Y, Xie Q, Zhou L Y, et al. First-principles calculations of the photoelectric properties of Al doped Mg2Ge[J]. Journal of Atomic and Molecular Physics, 2020, 37(4): 618-624.

    [21] Hu L T, Ji L F, Sun Z Y, et al. First-principles study on Al doped 4H-SiC[J]. Sciential Sinica (Physica, Mechanica & Astronomica), 2020, 50(3): 108-114.

    [22] Tang W H, Fang H, Li F, et al. Theoretical study on electronic structure and optical properties of Al doped TiO2 crystalline materials[J]. Chinese Journal of Quantum Electronics, 2019, 36(1): 116-122.

    [23] Takao Y, Morita A. Electronic structure of black phosphorus: Tight binding approach[J]. Journal of the Physical Society of Japan, 1981, 105: 93-98.

    [24] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892-7895.

    [25] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.

    [26] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192.

    [27] Xiao B, Feng J, Zhou C T, et al. First principles study on the electronic structures and stability of Cr7C3 type multi-component carbides[J]. Chemical Physics Letters, 2008, 459(1-6): 129-132.

    [28] Takao Y, Morita A. Electronic structure of black phosphorus: Tight binding approach[J]. Journal of the Physical Society of Japan, 1981, 105: 93-98.

    [29] Sun M L, Tang W C, Ren Q Q, et al. A first-principles study of light non-metallic atom substituted blue phosphorene[J]. Applied Surface Science, 2015, 356: 110-114.

    [30] Zheng H L, Zhang J M, Yang B S, et al. A first-principles study on the magnetic properties of nonmetal atom doped phosphorene monolayers[J]. Physical Chemistry Chemical Physics, 2015, 17: 16341-16350.

    [31] Yu W Y. The Structures and Properties Study of Two-Dimensional Materials Based on Group VA Elements[D]. Henan: Zhengzhou University, 2017.

    [32] Seifert G, Hernandez E. Theoretical prediction of phosphorus nanotubes[J]. Chemical Physics Letters, 2000, 318: 355-360.

    ZHANG Zhongzheng, ZHANG Chunhong, YAN Wanjun, QIN Xinmao. Influence of doping on photoelectric properties of new two-dimensional material phosphorene[J]. Chinese Journal of Quantum Electronics, 2021, 38(1): 108
    Download Citation