• Journal of Inorganic Materials
  • Vol. 36, Issue 4, 411 (2021)
Jiatong ZHU, Zhihao LOU, Ping ZHANG, Jia ZHAO, Xuanyu MENG, Jie XU*, and Feng GAO
Author Affiliations
  • State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
  • show less
    DOI: 10.15541/jim20200426 Cite this Article
    Jiatong ZHU, Zhihao LOU, Ping ZHANG, Jia ZHAO, Xuanyu MENG, Jie XU, Feng GAO. Preparation and Thermal Properties of Rare Earth Tantalates (RETaO4) High-Entropy Ceramics[J]. Journal of Inorganic Materials, 2021, 36(4): 411 Copy Citation Text show less
    References

    [1] P PADTURE N, M GELL, H JORDAN E. Thermal barrier coatings for gas-turbine engine applications. Science, 296, 280-284(2002).

    [2] Q CAO X, R VASSEN, D STOVER. Ceramic materials for thermal barrier coatings. Journal of the European Ceramics Society, 24, 1-10(2004).

    [3] O RACEK, C BEMDT C. Mechanical property variations within thermal barrier coatings. Surface Coating Technology, 202, 362-369(2007).

    [4] J FENG, R REN X, Y WANG X et al. Thermal conductivity of ytterbia-stabilized zirconia. Script Materialia, 66, 41-44(2012).

    [5] M ZHAO, R REN X, J YANG et al. Thermo-mechanical properties of ThO2-doped Y2O3 stabilized ZrO2 for thermal barrier coatings. Ceramics International, 42, 501-508(2016).

    [6] Q ZHENG, S WU F, L CHEN et al. Thermophysical and mechanical properties of YTaO4 ceramic by niobium substitution tantalum. Materials Letters, 268, 127586(2020).

    [7] S SHIAN, P SARIN, M GURAK et al. The tetragonal-monoclinic, ferroelastic transformation in yttrium tantalate and effect of zirconia alloying. Acta Materialia, 69, 196-202(2014).

    [8] J WANG, Y CHONG X, R ZHOU et al. Microstructure and thermal properties of RETaO4 (RE= Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials. Scripta Materialia, 126, 24-28(2017).

    [9] W YEH J, K CHEN S, J LIN S et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6, 299-303(2004).

    [10] C OSES, C TOHER, S CURTAROLO et al. High-entropy ceramics. Nature Reviews Materials, 5, 295-309(2020).

    [12] L CHEN, K WANG, T SU W et al. Research progress of transition metal non-oxide high-entropy ceramics. Journal of Inorganic Materials, 35, 748-758(2020).

    [13] B MIRACLE D, N SENKOV O. A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448-511(2017).

    [14] M ROST C, E SACHET, T BORMAN et al. Entropy-stabilized oxides. Nature Communications, 6, 8485(2015).

    [15] L YAN X, L CONSTANTIN, F LU Y et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. Journal of the American Ceramic Society, 101, 4486-4491(2018).

    [16] D LIU, H LIU H, S NING S et al. Synthesis of high-purity high-entropy metal diboride powders by boro/carbothermal reduction. Journal of the American Ceramic Society, 102, 7071-7076(2019).

    [17] T JIN, H SANG X, R UNOCIC R et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Advanced Materials, 30, 1707512(2018).

    [18] L BRAUN J, M ROST C, M LIM et al. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides. Advanced Materials, 30, 1805004(2018).

    [19] F LI, L ZHOU, X LIU J et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. Journal of Advanced Ceramics, 8, 576-582(2019).

    [20] J WRIGHT A, Y WANG Q, Y HUANG C et al. From high-entropy ceramics to compositionally-complex ceramics: a case study of fluorite oxides. Journal of the European Ceramic Society, 40, 2120-2129(2020).

    [21] L ZHOU, F LI, X LIU J et al. High-entropy thermal barrier coating of rare-earth zirconate: a case study on (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 prepared by atmospheric plasma spraying. Journal of the European Ceramic Society, 40, 5731-5739(2020).

    [22] K REN, K WANG Q, G SHAO et al. Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating. Scripta Materialia, 78, 382-386(2020).

    [23] W SCHLICHTING K, P PADTURE N, G KLEMENS P. Thermal conductivity of dense and porous yttria-stabilized zirconia. Journal of Materials Science, 36, 3003-3010(2001).

    [24] G EVANS A, A CHARLES E. Fracture toughness determinations by indentation. Journal of the American Ceramic Society, 59, 371-372(1976).

    [25] L CHEN, Y HU M, P WU et al. Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics. Journal of the American Ceramic Society, 102, 4809-4821(2019).

    [26] P WU, L CHEN, W CHEN et al. Investigation on microstructures and thermo-physical properties of ferroelastic (Y1-xDyx)TaO4 ceramics. Materialia, 4, 478-486(2018).

    [27] H LAI C, J LIN S, W YEH J et al. Preparation and characterization of AlCrTaTiZr muti-element nitride coatings. Surface Coating Technology, 201, 3275-3280(2006).

    Jiatong ZHU, Zhihao LOU, Ping ZHANG, Jia ZHAO, Xuanyu MENG, Jie XU, Feng GAO. Preparation and Thermal Properties of Rare Earth Tantalates (RETaO4) High-Entropy Ceramics[J]. Journal of Inorganic Materials, 2021, 36(4): 411
    Download Citation