• High Power Laser and Particle Beams
  • Vol. 32, Issue 3, 032001 (2020)
Shasha Gao, Xiaojun Wu, Zhibing He*, Xiaoshan He, Tao Wang, Fanghua Zhu, and Zhanwen Zhang
Author Affiliations
  • Research Center of Laser Fusion, CAEP, P. O. Box 919-987, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202032.200039 Cite this Article
    Shasha Gao, Xiaojun Wu, Zhibing He, Xiaoshan He, Tao Wang, Fanghua Zhu, Zhanwen Zhang. Research progress of fabrication techniques for laser inertial confinement fusion target[J]. High Power Laser and Particle Beams, 2020, 32(3): 032001 Copy Citation Text show less
    References

    [2] Hamza A V, Nikroo A, Alger E. Target development for the National Ignition Campaign[J]. Fusion Science and Technology, 69, 395-406(2016).

    [3] Kritcher A L, Clark D, Haan S. Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators[J]. Physics of Plasmas, 25, 056309(2018).

    [4] Landen O L, Edwards J, Haan S W. Capsule implosion optimization during the indirect-drive National Ignition Campaign[J]. Physics of Plasmas, 18, 051022(2011).

    [5] Benredjem D, Jarrah W, Gilleron F. Opacity calculations Ge and Si dopants in ICF[J]. High Energy Density Physics, 16, 23-27(2015).

    [6] Hu S X, Fiksel G, Goncharov V N. Mitigating laser imprint in direct-drive inertial confinement fusion implosions with high-Z dopants[J]. Physical Review Letters, 108, 195003(2012).

    [7] Dittrich T R, Hurricane O A, Callahan D A. Design of a high-foot high-adiabat ICF capsule for the National Ignition Facility[J]. Physical Review Letters, 112, 055002(2014).

    [8] Haan S W, Huang H, Johnson M A. Instability growth seeded by oxygen in CH shells on the National Ignition Facility[J]. Physics of Plasmas, 22, 032708(2015).

    [9] Haan S W, Clark D S, Baxamusa S H. Update 2015 on target fabrication requirements for NIF layered implosions, with emphasis on capsule support and oxygen modulations in GDP[J]. Fusion Science and Technology, 70, 121-126(2016).

    [10] Huang H, Carlson L C, Requieron W. Quantitative defect analysis of ablator capsule surfaces using a Leica confocal microscope and a high-density atomic force microscope[J]. Fusion Science and Technology, 70, 377-386(2016).

    [11] Nikroo A, Czechowicz D G, Castillo E R, et al. Production of higher strength thin walled glow disge polymer shells f cryogenic experiments at OMEGA[R]. GAA23881, 2002.

    [12] Huang H, Haas D M, Lee Y T. Oxygen profile determination in NIF GDP capsules using contact radiography[J]. Fusion Science and Technology, 63, 142-150(2013).

    [13] Chen K C, Cook R C, Huang H. Fabrication of graded germanium-doped CH shells[J]. Fusion Science and Technology, 49, 750-756(2006).

    [14] Brusasco R, Saculla M, and Cook R. Preparation of germanium doped plasma polymerized coatings as inertial confinement fusion target ablators[J]. J Vac Sci Technol, A13, 948-954(1995).

    [15] Reynolds H, Baxamusa S, Haan S W. Surface oxygen micropatterns on glow discharge polymer targets by photo irradiation[J]. Journal of applied physics, 119, 085305(2016).

    [16] Baxamusa S, Laurence T, Worthington M. Photo-oxidation of polymer-like amorphous hydrogenated carbon under visible light illumination[J]. Polymer Degradation and Stability, 122, 133-138(2015).

    [17] Lepro X, Ehrmann P, Menapace J. Ultralow stress, thermally stable cross-linked polymer films of polydivinylbenzene (PDVB)[J]. Langmuir, 33, 5204-5212(2017).

    [18] Lepro X, Ehrmann P, Rodrıguez J. Enhancing the oxidation stability of polydivinylbenzene films via residual pendant vinyl passivation[J]. Chemistry Select, 3, 500-506(2018).

    [19] Baxamusa S H, Lepró X, Lee T. Initiated chemical vapor deposition polymers for high peak-power laser targets[J]. Thin Solid Films, 635, 37-41(2017).

    [20] Biener J, Mirkarimi P B, Tringe J W, et al. Diamond ablats f Inertial Confinement Fusion[R]. UCRLJRNL213214, 2005.

    [21] Biener J, Mirkarimi P B, Tringe J W. Diamond ablators for Inertial Confinement Fusion[J]. Fusion Science and Technology, 49, 737-742(2006).

    [22] Clark D S, Kritcher A L, Yi S A. Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators[J]. Physics of Plasmas, 25, 032703(2018).

    [23] Hopkins L B, LePape S, Divol L. Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF)[J]. Plasma Phys Control Fusion, 61, 014023(2019).

    [24] Biener J, Ho D D, Wild C, E. Diamond spheres for inertial confinement fusion[J]. Nucl Fusion, 49, 112001(2009).

    [25] Kato S, Hiroki, Yamada. Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion[J]. Diamond & Related Materials, 86, 15-19(2018).

    [26] Dawedeit C, Kucheyev S O, Shin S J. Grain size dependent physical and chemical properties of thick CVD diamond films for high energy density physics experiments[J]. Diam Relat Mater, 40, 75-81(2013).

    [27] Ohmagari S, Yamada H, Umezawa H. Growth and characterization of freestanding p+ diamond (100) substrates prepared by hot-filament chemical vapor deposition[J]. Diam Relat Mater, 81, 33-37(2018).

    [28] Zylstra A B, Yi S A, MacLaren S. Beryllium capsule implosions at a case-to-capsule ratio of 3.7 on the National Ignition Facility[J]. Physics of Plasmas, 25, 102704(2018).

    [29] Simakov A N, Wilson D C, Yi S A. Performance of beryllium targets with full-scale capsules in low-fill 6.72-mm hohlraums on the National Ignition Facility[J]. Physics of Plasmas, 24, 052704(2017).

    [30] Xu H, Youngblood K P, Huang H. Characterization of thin copper diffusion barrier layer in beryllium capsules[J]. Fusion Science and Technology, 63, 202-207(2013).

    [31] Huang H, Xu H W, Youngblood K P. Inhomogeneous copper diffusion in NIF beryllium ablator capsules[J]. Fusion Science and Technology, 63, 190-201(2013).

    [32] Youngblood K P, Huang H, Xu H W. Thin oxides as a copper diffusion barrier for NIF beryllium ablator capsules[J]. Fusion Science and Technology, 63, 209-212(2013).

    [33] Hoppe M L, Castillo E. Polishing of beryllium capsules to meet NIF specifications[J]. Journal de Physique IV (Proceedings), 133, 895-898(2006).

    [34] Bae J, Rodriguez J, Kong C, et al. Beryllium capsule processing improvements: Polishing mrel removal[R]. IFT\P2019012, 2019.

    [35] Xu H W, Alford C S, Cooley J C. Beryllium capsule coating development for NIF targets[J]. Fusion Science and Technology, 51, 547-552(2007).

    [36] Bhandarkar S, Letts S A, Buckley S. Removal of the mandrel from beryllium sputter coated capsules for NIF targets[J]. Fusion Science and Technology, 51, 564-571(2007).

    [37] Nagel S R, Haan S W, Rygg J R. Effect of the mounting membrane on shape in inertial confinement fusion implosions[J]. Physics of plasmas, 22, 022704(2015).

    [38] Meezan N B, Edwards M J, Hurricane O A. Indirect drive ignition at the National Ignition Facility[J]. Plasma Physics and Controlled Fusion, 59, 014021(2017).

    [39] Smalyuk V A, Robey H F, Alday C L. Review of hydro-instability experiments with alternate capsule supports in indirect drive implosions on the National Ignition Facility[J]. Physics of Plasmas, 25, 072705(2018).

    [40] Weber C R, Casey D T, Clark D S. Improving ICF implosion performance with alternative capsule supports[J]. Physics of Plasmas, 24, 056302(2017).

    [41] Hammel B A, Tommasini R, Clark D S. Simulations and experiments of the growth of the “tent” perturbation in NIF ignition implosions[J]. Journal of Physics: Conference Series, 717, 012021(2016).

    [42] Haan S W, Atherton J, Clark D S, et al. NIF ignition campaign target perfmance requirements: status May 2012[R]. LLNLPROC583732, 2012.

    [43] Haan S W, Lindl J D, Callahan D A. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility[J]. Physics of Plasmas, 18, 051001(2011).

    [44] Hammel B A, Weber C R, Stadermann M. A “polar contact” tent for reduced perturbation and improved performance of NIF ignition capsules[J]. Physics of Plasmas, 25, 082714(2018).

    [47] Glocker D A. A proposed design for multishell cryogenic laser fusion targets using superconducting levitation[J]. Appl Phys Lett, 39, 478-479(1981).

    [48] Kreutz Ronald. Pellet delivery for the conceptual inertial confinement fusion reactor HIBALL[J]. Fusion Technology, 8, 2708-2720(1985).

    [49] Yoshida H, Katakami K, Sakagami Y. Magnetic suspension of a pellet for inertial confinement fusion[J]. Laser and Particle Beams, 11, 455(1993).

    [50] Sakagami Y, Yoshida H, Yasufuku K. Mechanism of optical forces of magnetically suspended pellet for laser fusion scheme[J]. Fusion Engineering and Design, 44, 471-473(1999).

    [51] Tsuji R. Trajectory adjusting system using a magnetic lens for a Pb-coated superconducting IFE target[J]. Fusion Engineering and Design, 81, 2877-2885(2006).

    [52] Ishigaki Y, Ueda H, Agatsuma K. Accurate position control of active magnetic levitation using sphere-shaped HTS bulk for Inertial Nuclear Fusion[J]. IEEE Transn Applied Superconductivity, 19, 2133-2136(2009).

    [53] Aleksandrova I V, Koresheva E R. Review on high repetition rate and mass production of the cryogenic targets for laser IFE[J]. High Power Laser Science and Engineering, e11, 1-24(2017).

    [54] Baker A A, Aji L B, Bae J H. Vapor annealing synthesis of non-epitaxial MgB2 films on glassy carbon[J]. Superconductor Science and Technology, 31, 055006(2018).

    [55] Li X, Xiao T, Chen F. A novel superconducting magnetic levitation method to support the laser fusion capsule by using permanent magnets[J]. Matter and Radiation at Extremes, 3, 104-109(2018).

    [56] Young P E, Rosen M D, Hammer J H. Demonstration of the density dependence of X-ray flux in a laser-driven hohlraum[J]. Physical Review Letters, 101, 81-84(2008).

    [57] Hurricane O A, Callahan D A, Casey D T. Inertially confined fusion plasmas dominated by alpha-particle self-heating[J]. Nature Physics, 12, 800-807(2016).

    [58] Döppner T, Callahan D A, Hurricane O A. Demonstration of high performance in layered deuterium-tritium capsule implosions in uranium hohlraums at the National Ignition Facility[J]. Physical Review Letters, 115, 055001(2015).

    [59] Le Pape S, Berzak Hopkins L F, Divol L. Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility[J]. Physical Review Letters, 120, 245003(2018).

    [60] Kline J L, Batha S H, Benedetti L R. Progress of indirect drive inertial confinement fusion in the United States[J]. Nuclear Fusion, 112018(2019).

    [61] Ping Y, Smalyuk V A, Amendt P. Enhanced energy coupling for indirectly driven inertial confinement fusion[J]. Nature Physics, 15, 138-141(2019).

    [62] Amendt P, Cerjan C, Hinkel D E. Rugby-like hohlraum experimental designs for demonstrating X-ray drive enhancement[J]. Physics of Plasmas, 15, 012702(2008).

    [63] Vandenboomgaerde M, Bastian J, Casner A. Prolate-spheroid (“rugby-shaped”) hohlraum for inertial confinement fusion[J]. Physical Review Letters, 99, 065004(2007).

    [64] Amendt P, Ross J S, Milovich J L. Low-adiabat rugby hohlraum experiments on the National Ignition Facility: Comparison with high-flux modeling and the potential for gas-wall interpenetration[J]. Physics of Plasmas, 21, 112703(2014).

    [65] Masson-Laborde P E, Monteil M C, Tassin V. Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums[J]. Physics of Plasmas, 23, 022703(2016).

    [66] Robey H F, Berzak Hopkins L, Milovich J L. The I-Raum: A new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility[J]. Physics of Plasmas, 25, 012711(2018).

    [67] Tommasini R, Belyaev M, Cerjan C. Ultra-high (>30%) coupling efficiency designs for demonstrating central hot-spot ignition on the National Ignition Facility using a Frustraum[J]. Physics of Plasmas, 26, 082707(2019).

    [68] Bhandarkar S, Baumann T, Alfonso N. Fabrication of low-density foam liners in hohlraums for NIF targets[J]. Fusion Science and Technology, 73, 194-209(2017).

    [69] Horwood C, Stadermann M, Biener M. Platinum electrodeposition for supported ALD templated foam hohlraum liners[J]. Fusion Science and Technology, 73, 219-228(2017).

    [70] Clark D S, Weber C R, Kritcher A L. Modeling and projecting implosion performance for the National Ignition Facility[J]. Nuclear Fusion, 59, 032008(2019).

    [71] Edwards M J, Marinak M, Dittrich T. The effects of fill tubes on the hydrodynamics of ignition targets and prospects for ignition[J]. Phys Plasmas, 12, 056318(2005).

    [72] Hammel B A, Haan S W, Clark D S. High-mode Rayleigh-Taylor growth in NIF ignition capsules[J]. High Energy Density Physics, 6, 171(2010).

    [73] MacPhee A G, Smalyuk V A, Landen O L. Mitigation of X-ray shadow seeding of hydrodynamic instabilities on inertial confinement fusion capsules using a reduced diameter fuel fill-tube[J]. Physics of Plasmas, 25, 054505(2018).

    [74] Haan S W, Kritcher A L, Clark D S, et al. Comparison of the three NIF ablats[R]. LLNLTR741418, 2017.

    [75] Nikroo A. Target fabrication at Lawrence Liverme National Labaty[R]. LLNLPRES956011, 2019.

    CLP Journals

    [1] Haoxuan Si, Hao Xu, Huiyao Du, Shengzhen Yi, Zhanshan Wang. Areal density measurement technology for metal foils based on X-ray bent crystal imaging[J]. High Power Laser and Particle Beams, 2023, 35(11): 112001

    [2] Yuling Tang, Qingxian Zhao, Jiaming Liu, Shouhua Luo. Surface defect detection method for capsule based on micro-CT image[J]. High Power Laser and Particle Beams, 2024, 36(1): 012001

    Shasha Gao, Xiaojun Wu, Zhibing He, Xiaoshan He, Tao Wang, Fanghua Zhu, Zhanwen Zhang. Research progress of fabrication techniques for laser inertial confinement fusion target[J]. High Power Laser and Particle Beams, 2020, 32(3): 032001
    Download Citation