• Journal of Inorganic Materials
  • Vol. 35, Issue 5, 617 (2020)
Tian XIA1、2, Xie MENG1, Ting LUO1, and Zhongliang ZHAN1、*
Author Affiliations
  • 1CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.15541/jim20190225 Cite this Article
    Tian XIA, Xie MENG, Ting LUO, Zhongliang ZHAN. La 3+-substituted Sr2Fe1.5Ni0.1Mo0.4O6-δ as Anodes for Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2020, 35(5): 617 Copy Citation Text show less
    References

    [1] M CASSIDY, G LINDSAY, K KENDALL. The reduction of nickel-zirconia cermet anodes and the effects on supported thin electrolytes. Journal of Power Sources, 61, 189-192(1996).

    [2] P SLATER R, P FAGG D, S IRVINE J T. Synthesis and electrical characterization of doped perovskite titanates as potential anode materials for solid oxide fuel cells. Journal of Materials Chemistry, 7, 2495-2498(1997).

    [3] S TAO, S IRVINE J T. A redox-stable efficient anode for solid- oxide fuel cells. Nature Materials, 2, 320(2003).

    [4] Q LIU, X DONG, G XIAO et al. A novel electrode material for symmetrical SOFCs. Advanced Materials, 22, 5478-5482(2010).

    [5] H DU Z, L ZHAO H, M LI S et al. Exceptionally high performance anode material based on lattice structure decorated double perovskite Sr2FeMo2/3Mg1/3O6-δ for solid oxide fuel cells. Advanced Energy Materials, 8, 1800062(2018).

    [6] G YANG, J FENG, W SUN et al. The characteristic of strontium- site deficient perovskites SrxFe1.5Mo0.5O6-δ(x=1.9-2.0) as intermediate-temperature solid oxide fuel cell cathodes. Journal of Power Sources, 268, 771-777(2014).

    [7] B HE, L ZHAO, S SONG et al. Sr2Fe1.5Mo0.5O6-δ-Sm0.2Ce0.8O1.9 composite anodes for intermediate-temperature solid oxide fuel cells. Journal of The Electrochemical Society, 159, B619-B626(2012).

    [8] L XIAO G, L CHEN F. Ni modified ceramic anodes for direct- methane solid oxide fuel cells. Electrochemistry Communications, 13, 57-59(2011).

    [9] L XIAO G, C JIN, Q LIU et al. Ni modified ceramic anodes for solid oxide fuel cells. Journal of Power Sources, 201, 43-48(2012).

    [10] Z LIU, B LIU, D DING et al. Fabrication and modification of solid oxide fuel cell anodes via wet impregnation/infiltration technique. Journal of Power Sources, 237, 243-259(2013).

    [11] G TSEKOURAS, D NEAGU, S IRVINE J T. Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants. Energy Environ. Sci., 6, 256-266(2012).

    [12] D NEAGU, G TSEKOURAS, N MILLER D et al. In situ growth of nanoparticles through control of non-stoichiometry. Nature Chemistry, 5, 916-923(2013).

    [13] Z DU, H ZHAO, S YI et al. High-performance anode material Sr2FeMo0.65Ni0.35O6-δ with in situ exsolved nanoparticle catalyst. ACS Nano, 10, 8660-8669(2016).

    [14] Y GAO, J WANG, Q LYU Y et al. In situ growth of Pt3Ni nanoparticles on an A-site deficient perovskite with enhanced activity for the oxygen reduction reaction. J. Mater. Chem. A, 5, 6399-6404(2017).

    [15] N MAHATO, A BANERJEE, A GUPTA et al. Progress in material selection for solid oxide fuel cell technology: a review. Prog. Mater. Sci., 72, 141-337(2015).

    [16] Y WANG, T LIU, M LI et al. Exsolved Fe-Ni nano-particles from Sr2Fe1.3Ni0.2Mo0.5O6 perovskite oxide as a cathode for solid oxide steam electrolysis cells. Journal of Materials Chemistry A, 4, 14163-14169(2016).

    [17] T ZHU, E TROIANI H, V MOGNI L et al. Ni-substituted Sr(Ti,Fe)O3 SOFC anodes: achieving high performance via metal alloy nanoparticle exsolution. Joule, 2, 478-496(2018).

    [18] J MYUNG, D NEAGU, N MILLER D et al. Switching on electrocatalytic activity in solid oxide cells. Nature, 537, 528-531(2016).

    [19] W LEE, W HAN J, Y CHEN et al. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc., 135, 7909-7925(2013).

    [20] E GÁLVEZ M, R JACOT, J SCHEFFE et al. Physico-chemical changes in Ca, Sr and Al-doped La-Mn-O perovskites upon thermochemical splitting of CO2via redox cycling. Physical Chemistry Chemical Physics, 17, 6629-6634(2015).

    [21] B MUÑOZ-GARCÍA A, E BUGARIS D, M PAVONE et al. Unveiling structure-property relationships in Sr2Fe1.5Mo0.5O6-δ, an electrode material for symmetric solid oxide fuel cells. Journal of the American Chemical Society, 134, 6826-6833(2012).

    [22] X MENG, D HAN, H WU et al. Characterization of SrFe0.75Mo0.25O3-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ composite cathodes prepared by infiltration. Journal of Power Sources, 246, 906-911(2014).

    [23] G XIAO, Q LIU, F ZHAO et al. Sr2Fe1.5Mo0.5O6 as cathodes for intermediate-temperature solid oxide fuel cells with La0.8Sr0.2Ga0.87Mg0.13O3 electrolyte. J. Electrochem. Soc., 158, B455-B460(2011).

    [24] M SACCOCCIO, H WAN T, C CHEN et al. Optimal regularization in distribution of relaxation times applied to electrochemical impedance spectroscopy: ridge and Lasso regression methods - a theoretical and experimental study. Electrochimica Acta, 147, 470-482(2014).

    [25] H DU Z, L ZHAO H, Y YANG C et al. Optimization of strontium molybdate based composite anode for solid oxide fuel cells. J. Power Sources, 274, 568-574(2015).

    [26] X MENG, J LIU X, D HAN et al. Symmetrical solid oxide fuel cells with impregnated SrFe0.75Mo0.25O3-δ electrodes. J. Power Sources, 252, 58-63(2014).

    Tian XIA, Xie MENG, Ting LUO, Zhongliang ZHAN. La 3+-substituted Sr2Fe1.5Ni0.1Mo0.4O6-δ as Anodes for Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2020, 35(5): 617
    Download Citation