• Infrared and Laser Engineering
  • Vol. 46, Issue 10, 1022001 (2017)
Liao Huixi*, Xu Baobi, Huang Xiaofeng, and Han Yu
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201746.1022001 Cite this Article
    Liao Huixi, Xu Baobi, Huang Xiaofeng, Han Yu. Achievable information rate of deep-space laser uplink communication in presence of beam wander effects[J]. Infrared and Laser Engineering, 2017, 46(10): 1022001 Copy Citation Text show less
    References

    [1] Zeng Fei, Gao Shijie, San Xiaogang, et al. Development status and trend of airborne laser communication terminals[J]. Chinese Optics, 2016, 9(1): 65-73. (in Chinese)

    [2] Boroson D M, Robinson B S. The lunar laser communication demonstration: NASA′s first step toward very high data rate support of science and exploration missions[J]. Space Sci Rev, 2014, 185: 115-128.

    [3] Raible D E, Romanofsky R R, Budinger J M, et al. On the physical realizability of hybrid RF and optical communications platforms for deep space applications[C]//AIAA International Comimunications Satellite Systems Conference, 2014.

    [4] Cornwell D M. NASA′s Optical communications program for 2015 and beyond[C]//SPIE, 2015, 9354: 1-6.

    [5] Engin D, Burton J, Darab I, et al. 1 030 nm Yb-fiber-MOPA based, multi-aperture high-power, high energy uplink laser beacon for deep space communication[C]//SPIE, 2014, 8971: 1-11.

    [6] Ma J, Jiang Y, Tan L, et al. Influence of beam wander on bit-error rate in a ground-to-satellite laser uplink communication system[J]. Opt Lett, 2008, 33(22): 2611-2613.

    [7] Liu Jinhua, Wang Yanlong, Dai Jisheng. Linear MIMO precoder optimization with maximizing channel capacity under joint power constraints[J]. Optics and Precision Engineering, 2015, 23(10z): 599-604. (in Chinese)

    [8] Wang Huiqin, Wang Xue, Cao Minghua. Bit error rate of optical multiple input multiple output system in correlated channel[J]. Optics and Precision Engineering, 2016, 24(9): 2142-2148. (in Chinese)

    [9] Chen Mu, Ke Xizheng. Effect of atmospheric turbulence on the performance of laser communication system[J]. Infrared and Laser Engineering, 2016, 45(8): 0822009. (in Chinese)

    [10] Huang Long, Zhang Wenhui. Error calculation of periscope pointing assembly for laser communication[J]. Chinese Optics, 2015, 8(5): 840-846. (in Chinese)

    [11] Wang Yi, Wang Deli, Du Fan, et al. Analysis of channel capacity empoying circle polarization shift keying over Gamma-Gamma atmospheric turbulence channel[J]. Infrared and Laser Engineering, 2015, 44(10): 3084-3091. (in Chinese)

    [12] Andrews L C, Phillips R L. Laser Beam Propagation Through Random Media[M]. Bellingham: SPIE Optical Engineering Press, 1998: 223-243.

    [13] Davidson F M, Sun X. Gaussian approximation versus nearly exact performance analysis of optical communication systems with PPM signaling and APD receivers[J]. IEEE Trans Commun, 1988, 36(11): 1185-1191.

    [14] Kiasaleh K. Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence[J]. IEEE Trans Commun, 2005, 53(9): 1455-1461.

    [15] Muhammad S S, Gappmair W, Leitgeb E. PPM channel capacity evaluation for terrestrial FSO links[J]. Opt Exp, 2006, 15(16): 10075-10085.

    Liao Huixi, Xu Baobi, Huang Xiaofeng, Han Yu. Achievable information rate of deep-space laser uplink communication in presence of beam wander effects[J]. Infrared and Laser Engineering, 2017, 46(10): 1022001
    Download Citation