• Laser & Optoelectronics Progress
  • Vol. 52, Issue 4, 40003 (2015)
Ran Yang*, Wang Xiaolin, Su Rongtao, Zhou Pu, and Si Lei
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop52.040003 Cite this Article Set citation alerts
    Ran Yang, Wang Xiaolin, Su Rongtao, Zhou Pu, Si Lei. Research Progress of Stimulated Brillouin Scattering Suppression in Narrow Linewidth Fiber Amplifiers[J]. Laser & Optoelectronics Progress, 2015, 52(4): 40003 Copy Citation Text show less
    References

    [1] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives [J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92.

    [2] Andres M V, Cruz J L, Díez A. Actively Q-switched all-fiber lasers [J]. Laser Physics Letters, 2008, 5(2): 93-99.

    [3] Bufetov I A, Dianov E M. Bi-doped fiber lasers [J]. Laser Physics Letters, 2009, 6(7): 487-504.

    [4] Kobyakov A, Sauer M, Chowdhury D. Stimulated Brillouin scattering in optical fibers [J]. Advances in Optics and Photonics, 2010, 2(1): 1-59.

    [5] Xie Shuping, Xu Guoliang. Suppression on fiber stimulated Brillouin scattering based on phase modulaiton [J]. Acta Optica Sinica, 2013, 33(2): 0206003.

    [6] Liu Jiang, Wang Pu. High-power narror-bandwidth continuous wave thulium-doped all-fiber laser [J]. Chinese J Lasers, 2013, 40(1): 0102001.

    [7] Wu Weijun, Wang Xiong, Xiao Hu, et al.. Experimental study on suppression of stimulated Brillouin scattering in 2 mm-band fiber laser based on phase modulation [J]. Chinese J Lasers, 2014, 41(10): 1005001.

    [8] Huang Weifa, Wang Xiaochao, Wang Jiangfeng, et al.. Temperature characteristic of stimulated Brillouin scattering in single-mode optical fiber [J]. Chinese J Lasers, 2013, 40(4): 0405001.

    [9] Hao LiYun, Qi Yunfeng, Su Cen, et al.. Influence of transmitting fiber length on SBS threshold of continuous-wave single-frequency all fiber amplifier [J]. Acta Optica Sinica, 2013, 33(8): 0814001.

    [10] Robin C, Dajani I, Pulford B, et al.. Single-frequency Yb-doped photonic crystal fiber amplifier with 800 W output power [C]. Proceedings SPIE, 2014, 8961: 896103.

    [11] White J O, Petersen E, Edgecumbe J, et al.. A linearly chirped seed suppresses SBS in high-power fiber amplifiers, allows coherent combination, and enables long delivery fibers [C]. SPIE, 2014, 8961: 896102.

    [12] Ma Pengfei, Zhou Pu, Ma Yanxing, et al.. Single-frequency 332 W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality [J]. Applied Optics, 2013, 52(20): 4854-4857.

    [13] Agrawal G P. Nonlinear Fiber Optics[M]. Beijing: Beijing World Publishing Corporation, 2005: 245-249.

    [14] Lichtman E, Friesem A A, Waarts R G, et al.. Stimulated Brillouin scattering excited by two pump waves in singlemode fibers [J]. Journal of the Optical Society of America B, 1987, 4(9): 1397-1403.

    [15] Chiao R Y, Townes C H, Stoicheff B P. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves [J]. Physical Review Letters, 1964, 12(21): 592-595.

    [16] Alegria C, Jeong Y, Codemard C, et al.. 83-W single-frequency narrow-linewidth MOPA using large-core erbiumytterbium co-doped fiber [J]. IEEE Photonics Technology Letters, 2004, 16(8): 1825-1827.

    [17] Gray S, Liu A, Walton D T, et al.. 502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb doped fiber amplifier [J]. Opt Express, 2007, 15(25): 17044-17050.

    [18] Leigh M, Shi W, Zong J, et al.. High peak power single frequency pulses using a short polarization-maintaining phosphate glass fiber with a large core [J]. Applied Physics Letters, 2008, 92(18): 181108.

    [19] Shi W, Petersen E B, Yao Z, et al.. Kilowatt-level stimulated-Brillouin-scattering-threshold monolithic transformlimited 100 ns pulsed fiber laser at 1530 nm [J]. Optics Letters, 2010, 35(14): 2418-2420.

    [20] Wang X L, Zhou P, Xiao H, et al.. 310 W single-frequency all-fiber laser in master oscillator power amplification configuration [J]. Laser Physics Letters, 2012, 9(8): 591-595.

    [21] Yang Jianliang, Guo Zhaonan, Cha Kaide, et al.. Experimental study of SBS suppression using phase modulation in fiber CATV [J]. Chinese J Lasers, 2001, 28(5): 439-442.

    [22] Liu Yingfan, Lü Zhiwei, Dong Yongkang, et al.. Research on stimulated Brillouin scattering suppression based on multifrequency phase modulation [J]. Chinese Optics Letter, 2009, 7(1): 29-31.

    [23] Wang X L, Zhou P, Leng J Y, et al.. A 275-W multitone driven all-fiber amplifier seeded by a phase-modulated singlefrequency laser for coherent beam combining [J]. IEEE Photonics Technology Letters, 2011, 23(14): 980-982.

    [24] Engin D, Lu W, Akbulut M, et al.. 1 kW cw Yb-fiber-amplifier with <0.5 GHz linewidth and near-diffraction limited beam-quality, for coherent combining application [C]. SPIE, 2011, 7914: 791407.

    [25] Wang Xiaolin, Zhou Pu, Xiao Hu, et al.. Narrow linewidth all-fiber laser with 666 W power output [J]. High Power Laser and Particle Beams, 2012, 24(6): 1261-1262.

    [26] Wang Xiaolin, Zhou Pu, Leng Jinyong, et al.. A 330-W single-frequency retrievable multi-tone monolithic fiber amplifier [J]. Chinese Physics B, 2013, 22(4): 044205.

    [27] Williamson R S. Laser coherence control using homogeneous linewidth broadening: US, 20050047454 A1 [P]. 2005-03-03.

    [28] Khitrov V, Farley K, Leveille R, et al.. kW level narrow linewidth Yb fiber amplifiers for beam combining [C]. SPIE, 2010, 7686: 76860A.

    [29] Zeringue C, Dajani I, Naderi S, et al.. A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light [J]. Opt Express, 2012, 20(19): 21196-21213.

    [30] Anderson B, Robin C, Flores A, et al.. Experimental study of SBS suppression via white noise phase modulation [C]. SPIE, 2014, 8961: 89611W.

    [31] Robin C, Dajani I, Zernigue C, et al.. Pseudo-random binary sequency phase modulation in high power Yb-doped fiber amplifiers [C]. SPIE, 2013, 8601: 86010Z.

    [32] Hildebrandt M, Busche S, Wessels P, et al.. Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers [J]. Opt Express, 2008, 16(20): 15970-15979.

    [33] Nikles M, Thevenaz L, Robert P A. Brillouin gain spectrum characterization in single-mode optical fibers [J]. Journal of Lightwave Technology, 1997, 15(10): 1842-1851.

    [34] Hansryd J, Dross F, Westlund M, et al.. Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution [J]. Journal of Lightwave Technology, 2001, 19(11): 1691-1697.

    [35] Liu A. Stimulated Brillouin scattering in single-frequency fiber amplifiers with delivery fibers [J]. Opt Express, 2009, 17(17): 15201-15209.

    [36] Zhang L, Cui S, Liu C, et al.. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier[J]. Opt Express, 2013, 21(5): 5456-5462.

    [37] Jen C K, Oliveira J E B, Goto N, et al.. Role of guided acoustic wave properties in single-mode optical fibre design [J]. Electronics Letters, 1988, 24(23): 1419-1420.

    [38] Kobyakov A, Kumar S, Chowdhury D, et al.. Design concept for optical fibers with enhanced SBS threshold [J]. Opt Express, 2005, 13(14): 5338-5346.

    [39] Li M J, Chen X, Wang J, et al.. Al/Ge co-doped large mode area fiber with high SBS threshold [J]. Opt Express, 2007, 15(13): 8290-8299.

    [40] Robin C, Iyad D. Acoustically segmented photonic crystal fiber for single-frequency high-power laser applications [J]. Optics Letters, 2011, 36(14): 2641-2643.

    [41] White J O, Vasilyev A, Cahill J P, et al.. Suppression of stimulated Brillouin scattering in optical fibers using a linearly chirped diode laser [J]. Opt Express, 2012, 20(14): 15872-15881.

    [42] Webels P, Adel P, Auerbach M, et al.. Novel suppression scheme for Brillouin scattering [J]. Opt Express, 2004, 12(19): 4443-4448.

    [43] Su Rongtao. Coherent Amplified Array of Narrow-Linewidth Nanosecond Fiber Lasers [D]. Hunan: National University of Defense Technology, 2014: 46-48.

    [44] Yoonchan J, Nilsson J, Sahu J K, et al.. Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 546-551.

    CLP Journals

    [1] Yang Lei, Zheng Jiajin, Hao Liyun, Zhou Jun, Wei Wei. Influence of Signal Spectral Width Characteristic on SBS Threshold of Single Frequency Fiber Amplifier[J]. Chinese Journal of Lasers, 2017, 44(9): 901009

    [2] Zou Feng, Wang Zhaokun, Wang Ziwei, Zhou Cuiyun, Liu Yuan, Yang Yan, Zhou Jun. Gigahertz Narrow-Linewidth High-Peak Power Nanosecond Fiber Laser[J]. Chinese Journal of Lasers, 2016, 43(7): 701001

    [3] Zhou Zichao, Wang Xiaolin, Su Rongtao, Zhang Hanwei, Zhou Pu, Xu Xiaojun. Theoretical Study on SBS Effect Suppression of Gradient Doping Gain Fibers[J]. Laser & Optoelectronics Progress, 2016, 53(7): 70604

    Ran Yang, Wang Xiaolin, Su Rongtao, Zhou Pu, Si Lei. Research Progress of Stimulated Brillouin Scattering Suppression in Narrow Linewidth Fiber Amplifiers[J]. Laser & Optoelectronics Progress, 2015, 52(4): 40003
    Download Citation