• Infrared and Laser Engineering
  • Vol. 49, Issue 12, 20201080 (2020)
Yanhui Ji1, Yang He2, Haohua Wan1, Junjie Sun2, and Fei Chen2
Author Affiliations
  • 1State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 2State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • show less
    DOI: 10.3788/IRLA20201080 Cite this Article
    Yanhui Ji, Yang He, Haohua Wan, Junjie Sun, Fei Chen. Research progress on the high power flowing-gas circulation diode-pumped alkali vapor laser (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201080 Copy Citation Text show less
    References

    [1] T Ehrenreich, B Zhdanov, T Takekoshi. Diode pumped caesium laser. Electronics Letters, 41, 415-416(2005).

    [2] Page R H, Beach R J, Kanz V K, et al. First Demonstration of a DiodePumped Gas (Alkali Vap) Laser[C]Conference on Lasers & Electrooptics, 2005, CMAA1.

    [3] Zhdanov B V, Shaffer M K, Knize R J. Demonstration of a diode pumped continuous wave potassium laser[C]Spie Lase, 2011, 7915: 791506.

    [4] B V Zhdanov, R J Knize. Hydrocarbon-free potassium laser. Electronics Letters, 43, 1024-1025(2007).

    [5] Zweiback J, Komashko A, Krupke W F. Alkalivap lasers[C]Average Power Lasers Intense Beam Applications IV, 2010, 2010, 7581: 75810G.

    [6] W F Krupke. Diode pumped alkali lasers (DPALs)—A review (rev1). Progress in Quantum Electronics, 36, 4-28(2012).

    [7] B V Zhdanov, R J Knize. Review of alkali laser research and development. Optical Engineering, 52, 021010(2013).

    [8] F Gao, F Chen, J J Xie. Review on diode-pumped alkali vapor laser. Optik - International Journal for Light and Electron Optics, 124, 4353-4358(2013).

    [9] G A Pitz, M D Anderson. Recent advances in optically pumped alkali lasers. Applied physics reviews, 4, 041101(2017).

    [10] Krupke W F. Diodepumped Alkali laser[P]. 6, 643, 311, 2003.

    [11] W F Krupke, R J Beach, V K Kanz. Resonance transition 795-nm rubidium laser. Optics Letters, 28, 2336-2338(2003).

    [12] B V Zhdanov, T Ehrenreich, R J Knize. Highly efficient optically pumped cesium vapor laser. Optics Communications, 260, 696-698(2006).

    [13] E J Hurd, J C Holtgrave, G P Perram. Intensity scaling of an optically pumped potassium laser. Optics Communications, 357, 63-66(2015).

    [14] B V Zhdanov, M K Shaffer, R J Knize. Cs laser with unstable cavity transversely pumped by multiple diode lasers. Optics Express, 17, 14767-14770(2009).

    [15] Fox C, Perram G. Temperature gradients in diodepumped alkali lasers[R].Air fce Inst of tech wrightpatterson afboh school of engineering managementdept of engineering physics, 2012.

    [16] W Zhang, Y Wang, H Cai. Theoretical study on temperature features of a sealed cesium vapor cell pumped by laser diodes. Applied Optics, 53, 4180-4186(2014).

    [17] D E Weeks, C D Lewis, L A Schlie. Temperature dependence of the fine structure mixing induced by He−4 and He−3 in K and Rb Diode Pumped Alkali Lasers. Applied Physics B-Lasers and Optics, 126, 1-10(2020).

    [18] R J Beach, W F Krupke, V K Kanz. End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling. Journal of the Optical Society of America B, 21, 2151-2163(2004).

    [19] Y Liu, B Pan, J Yang. Thermal effects in high-power double diode-end-pumped Cs vapor lasers. IEEE Journal of Quantum Electronics, 48, 485-489(2012).

    [20] M K Shaffer, T C Lilly, B V Zhdanov. In situ non-perturbative temperature measurement in a Cs alkali laser. Optics Letters, 40, 119-122(2015).

    [21] I Auslender, E Yacoby, B D Barmashenko. Controlling the beam quality in DPALs by changing the resonator parameters. Applied Physics B, 126, 1-6(2020).

    [22] Petersen A, Lane R. Second harmonic operation of diodepumped Rb vap lasers[C]HighPower Laser Ablation VII, 2008, 7005: 700529.

    [23] A V Bogachev, S G Garanin, A M Dudov. Diode-pumped caesium vapour laserwith closed-cycle laser-active medium circulation. Quantum Electronics, 42, 95-98(2012).

    [24] Hostutler D. acterization of a diode pumped alkali laser with a flowing gain medium[C]HPLS&A 2016 Conference, 2016: 59.

    [25] Guoguang Ren, 任国光, Weiwei Yi, 伊炜伟, Yu Qi, 齐予. U.S. theater and strategic UVA-borne laser weapon. Laser&Optoelectronics Progress, 54, 100002.1-100002.8(2017).

    [26] Zediker M S, Makki S, Faircloth B O, et al. Control system f high power laser drilling wkover completion unit[P]. 9, 027, 668, 2015.

    [27] Xu Yao. Modeling simulation of FlowingDPAL[D]. Changsha: National University of Defense Technology: 2013. (in Chinese)

    [28] B Shen, J Huang, X Xu. Modeling of steady-state temperature distribution in diode-pumped Alkali vapor lasers: analysis of the experimental results. IEEE Journal of Quantum Electronics, 1-7(2017).

    [29] B V Zhdanov, M D Rotondaro, M K Shaffer. Measurements of the gain medium temperature in an operating Cs DPAL. Optics Express, 24, 19286-19292(2016).

    [30] Y Eyal, A Ilya, W Karol. Analysis of continuous wave diode pumped cesium laser with gas circulation: experimental and theoretical studies. Optics Express, 26, 17814-17819(2018).

    [31] B D Barmashenko, S Rosenwaks. Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers. Journal of the Optical Society of America B, 30, 1118-1126(2013).

    [32] Barmashenko B D, Rosenwaks S, Waichman K. Model calculations of kiic fluid dynamic processes in diode pumped alkali lasers[C]Technologies f Optical Countermeasures X; HighPower Lasers 2013: Technology Systems. International Society f Optics Photonics, 2013, 8898: 88980W.

    [33] B D Barmashenko, S Rosenwaks. Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas. Optics Letters, 37, 3615-3617(2012).

    [34] Barmashenko B D, Rosenwaks S, Waichman K. Kiic fluid dynamic processes in diode pumped alkali lasers: semianalytical 2D 3D CFD modeling[C]Proceedings of Spie the International Society f Optical Engineering, 2014, 8962: 89620C.

    [35] K Waichman, B D Barmashenko, S Rosenwaks. Beam propagation in an inhomogeneous medium of a static gas cesium diode pumped alkali laser: three-dimensional wave optics and fluid dynamics simulation. Journal of the Optical Society of America B Optical Physics, 35, 558-567(2018).

    [36] B D Barmashenko, S Rosenwaks. Feasibility of supersonic diode pumped alkali lasers: model calculations. Applied Physics Letters, 102, 141108(2013).

    [37] Rosenwaks S, Barmashenko B D, Waichman K. Theetical studies of the feasibility of supersonic DPALs[C]Spie Security+ Defence, 2014, 9251: 92510W.

    [38] Rosenwaks S, Barmashenko B D, Waichman K. What can we gain from supersonic operation of diode pumped alkali lasers: model calculations[C]Spie Security+Defence. International Society f Optics Photonics, 2013, 9251: 92510W.

    [39] Rosenwaks S, Barmashenko B D, Waichman K. Semianalytical 3D CFD DPAL modeling: feasibility of supersonic operation[C]Proceedings of Spie the International Society f Optical Engineering, 2014, 8962: 896209.

    [40] E Yacoby, K Waichman, O Sadot. Flowing-gas diode pumped alkali lasers: theoretical analysis of transonic vs supersonic and subsonic devices. Optics Express, 24, 5469-5477(2016).

    [41] Barmashenko B D, Auslender I, Yacoby E, et al. Modeling of static flowinggas diode pumped alkali lasers[C]Conference on High EnergyAverage Power Lasers Intense Beam Applications IX, 2016, 9729: 972904.

    [42] Rosenwaks S, Yacoby E, Waichman K, et al. Supersonic diode pumped alkali lasers: Computational fluid dynamics modeling[C]Technologies f Optical Countermeasures XⅡ HighPower Lasers 2015: Technology Systems. International Society f Optics Photonics, 2015, 9650: 96500A.

    [43] E Yacoby, K Waichman, O Sadot. Modeling of supersonic diode pumped alkali lasers. Journal of the Optical Society of America B-Optical Physics, 32, 1824-1833(2015).

    [44] Waichman K, Barmashenko B D, Rosenwaks S. CFD DPAL modeling f various schemes of flow configurations[C]SPIE Security + Defence, 2014. 9251: 92510U.

    [45] E Yacoby, K Waichman, O Sadot. Modeling of flowing-gas diode-pumped potassium laser with different pumping geometries: scaling up and controlling beam quality. IEEE Journal of Quantum Electronics, 53, 1-7(2017).

    [46] Yacoby E, Waichman K, Sadot O, et al. Scaling up controlling beam quality of flowinggas diode pumped potassium laser with different pumping geometries: 3D CFD modeling[C]High Power Lasers: Technology Systems, Platfms, Effects, 2017, 10436: 104360D.

    [47] Perram G P, Gavrielides A, Schlie L A, et al. Analytic treatment of high power diode pumped lasers with unstable resonat in a flowing medium[C]Laser Resonats, Micresonats, & Beam Control XX, 2018, 10518: 1051815.

    [48] A Gavrielides, L A Schlie, R D Loper. Analytic treatment of beam quality and power efficiency in a high-power transverse flow diode pumped alkali laser. Journal of the Optical Society of America B, 35, 2202-2210(2018).

    [49] M Endo, R Nagaoka, H Nagaoka. Wave-optics simulation of diode-pumped cesium vapor laser coupled with a simplified gas-flow model. Japanese Journal of Applied Physics, 57, 092701(2018).

    [50] M Endo, R Nagaoka, H Nagaoka. Modeling of diode-pumped cesium vapor laser by combination of computational fluid dynamics and wave-optics. Japanese Journal of Applied Physics, 59, 022002(2020).

    [51] Krupke W F, Beach R J, Kanz V K, et al. New class of cw highpower diodepumped alkali lasers (DPALs)[C]Presented at: HighPower Laser Ablation, 2004.

    [52] Zweiback J S, Betin A A, Krupke W F. Alkalivap laser with transverse pumping[P]. 12122, 524, 2009.

    [53] B V Zhdanov, M D Rotondaro, M K Shaffer. Potassium diode pumped alkali laser demonstration using a closed cycle flowing system. Optics Communications, 354, 256-258(2015).

    [54] B V Zhdanov, M D Rotondaro, M K Shaffer. Low pressure cesium and potassium diode pumped alkali lasers: pros and cons. Optical Engineering, 55, 026105(2016).

    [55] R J Knize, B V Zhdanov, M D Rotondaro. Experimental study of the Cs diode pumped alkali laser operation with different buffer gases. Optical Engineering, 55, 036109.1-036109.5(2016).

    [56] Knize R J, Zhdanov B V, Rotondaro M T, et al. Operation of static flowing Cs DPAL with different buffer gas mixtures[C]Spie Lase, 2016, 9729: 972903..

    [57] Pitz G A, Stalnaker D M, Guild E M, et al. Advancements in flowing diode pumped alkali lasers[C]High Energyaverage Power Lasers & Intense Beam Applications IX, 2016, 9729.

    [58] Yamamoto T, Yamamoto F, Endo M, et al. Experimental investigation of gas flow type DPAL[C]High EnergyAverage Power Lasers Intense Beam Applications IX, 2017, 10254: 102540S.

    [59] B V Zhdanov, M D Rotondaro, M K Shaffer. Examination of potassium diode pumped alkali laser using He, Ar, CH4 and C2H6 as buffer gas. Optics Express, 25, 30793-30798(2017).

    [60] Yacoby E, Auslender I, Barmashenko B D, et al.Continuous wave diode pumped flowinggas Cesium Laser[C]. 22nd International Symposium on High Power Laser Systems Applications (HPLS A), 2018, 11042: 110420D.

    [61] Z Yang, H Wang, Q Lu. Theoretical model and novel numerical approach of a broadband optically pumped three-level alkali vapour laser. Journal of Physics B Atomic Molecular & Optical Physics, 44, 085401(2011).

    [62] Z Yang, H Wang, W Hua. Diode-pumped rubidium vapor laser. High Power Laser and Particle Beams, 23, 2273-2274(2011).

    [63] Z Yang, H Wang, Q Lu. Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium. Journal of the Optical Society of America B, 28, 1353-1364(2011).

    [64] Z Yang, H Wang, Q Lu. Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission. Optics Express, 19, 23118-23131(2011).

    [65] Han J, You W, An G, et al. Investigation of physical features of both static flowinggas diodepumped rubidium vap lasers[C]Proceedings of Spie the International Society f Optical Engineering, 2014, 9266: 92660P.

    [66] J Han, Y Wang, H Cai. Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I. Optics Express, 22, 13988-14003(2014).

    [67] J Han, Y Wang, H Cai. Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system (part Ⅱ). Optics Express, 23, 9508-9515(2015).

    [68] Z Qi, B Pan, C Li. Analysis of temperature distributions in diode-pumped alkali vapor lasers. Optics Communications, 283, 2406-2410(2010).

    [69] B Shen, B Pan, J Jiao. Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers. Optics Express, 23, 19500-19511(2015).

    [70] B Shen, X Xu, C Xia. Computation of three-dimensional temperature distribution in diode-pumped alkali vapor amplifiers. Optics Communications, 368, 43-48(2016).

    [71] B Shen, X Xu, C Xia. Theoretical analysis of the semi-ring and trapezoid LD side-pumped alkali vapor lasers. Optics Communications, 380, 28-34(2016).

    [72] X Xu, B Shen, J Huang. Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow. Journal of Applied Physics, 122, 2151-2163(2017).

    [73] X Xu, B Shen, C Xia. Modeling of kinetic and thermodynamic processes in a flowing exciplex pumped alkali vapor laser. IEEE Journal of Quantum Electronics, 53, 1-7(2017).

    [74] C Xia, B Shen, X Xu. Modeling of a diode four-side pumped cesium vapor laser amplifier with flowing medium. Applied Physics B, 123, 75(2017).

    [75] C Xia, X Xu, J Huang. Influences of operating parameters on deleterious processes of side-pumped cesium vapor laser amplifiers with flowing medium. Journal of Applied Physics, 124, 053102(2018).

    CLP Journals

    [1] Haohua Wan, Yang He, Yanhui Ji, Fei Chen. Effect of buffer gas on gas temperature distribution and output characteristics of flowing-gas circulation cesium vapor laser[J]. Infrared and Laser Engineering, 2022, 51(10): 20211105

    [2] Huihua Wang, Longxin Lin, Xin Ye, Xiaoying Lv. Status and development trend of overseas new type electric drive high-energy laser technology[J]. Infrared and Laser Engineering, 2023, 52(1): 20220283

    Yanhui Ji, Yang He, Haohua Wan, Junjie Sun, Fei Chen. Research progress on the high power flowing-gas circulation diode-pumped alkali vapor laser (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201080
    Download Citation