[1] DAS R, HARROP P. Printed, organic & flexible electronics forecasts, players & opportunities 2016-2026 [EB/OL]. http://www.idtechex.com, 2016.
[2] DAHIYA R S, GENNARO S. Bendable ultra-thin chips on flexible foils [J]. IEEE Sensors Journal, 2013, 13(10): 4030-4037.
[3] TSANG C K, ANDRY P S, SPROGIS E J, et al. CMOS-compatible through silicon vias for 3D process integration [J]. MRS Online Proceedings Library, 2006, 970(1): 1-9.
[4] CLARKE D R. Chapter 2 Fracture of Silicon and Other Semiconductors [J]. Semiconductors and Semimetals, 1992, 37: 79-142.
[5] SCHOENFELDER S, BAGDAHN J, PETZOLD M. Mechanical characterisation and modelling of thin chips [M] // New York: Springer, 2011: 195-218.
[6] LAWN B. Fracture of brittle solids [J]. Cambridge: Cambridge University Press, 1993: 307-334.
[7] WACKER N, RICHTER H, HOANG T, et al. Stress analysis of ultra-thin silicon chip-on-foil electronic assembly under bending [J]. Semiconductor Science & Technology, 2014, 29(9): 095007.
[8] WU X, YU J, REN T, et al. Micro-Raman spectroscopy measurement of stress in silicon [J]. Microelectronics Journal, 2007, 38(1): 87-90.
[9] FEDORCHENKO A I, WANG A B, CHENG H H. Thickness dependence of nanofilm elastic modulus [J]. Applied Physics Letters, 2009, 94(15): 152111.
[10] RADHAKRISHNAN H S, MARTINI R, DEPAUW V, et al. Improving the quality of epitaxial foils produced using a porous silicon-based layer transfer process for high-efficiency thin-film crystalline silicon solar cells [J]. IEEE Journal of Photovoltaics, 2013, 4(1): 70-77.
[11] VAN DEN ENDE D A, VAN DE WIEL H J, KUSTERS R H L, et al. Mechanical and electrical properties of ultra-thin chips and flexible electronics assemblies during bending [J]. Microelectronics Reliability, 2014, 54(12): 2860-2870.
[12] MAJEED B, PAUL I, RAZEEB K M, et al. Microstructural, mechanical, fractural and electrical characterization of thinned and singulated silicon test die [J]. Journal of Micromechanics and Microengineering, 2006, 16(8): 1519.
[13] SUN Y, THOMPSON S E, NISHIDA T. Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors [J]. Journal of Applied Physics, 2007, 101(10): 381-414.
[14] KITTEL C, MCEUEN P, MCEUEN P. Introduction to solid state physics [M]. New York: Wiley, 1996.
[15] MOHTA N, THOMPSON S E. Mobility enhancement [J]. IEEE Circuits and Devices Magazine, 2005, 21(5): 18-23.
[16] IRIE H, KITA K, KYUNO K, et al. In-plane mobility anisotropy and universality under uni-axial strains in nand p-MOS inversion layers on (100), [110], and (111) Si [C] // IEEE International Electron Devices Meeting. 2004: 225-228.
[17] SMITH C S. Piezoresistance effect in germanium and silicon [J]. Physical Review, 1954, 94(1):42-49.
[18] HASSAN M U, REMPP H, HOANG T, et al. Anomalous stress effects in ultra-thin silicon chips on foil [C] // IEEE International Electron Devices Meeting. 2009: 1-4.
[19] VILOURAS A, HEIDARI H, GUPTA S, et al. Modeling of CMOS devices and circuits on flexible ultrathin chips[J]. IEEE Transactions on Electron Devices, 2017, 64(5): 2038-2046.
[20] GUPTA S, HEIDARI H, VILOURAS A, et al. Device modelling for bendable piezoelectric FET-based touch sensing system [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(12): 2200-2208.
[21] SEVILLA G A T, ALMUSLEM A S, GUMUS A, et al. High performance high-κ/metal gate complementary metal oxide semiconductor circuit element on flexible silicon [J]. Applied Physics Letters, 2016, 108(9): 45-96.
[22] GHONEIM M T, ZIDAN M A, ALNASSAR M Y, et al. Thin PZT-based ferroelectric capacitors on flexible silicon for nonvolatile memory applications [J]. Advanced Electronic Materials, 2015, 1(6): 1500045.
[23] RICHTER H, REMPP H D, HASSAN M U, et al. Technology and design aspects of ultra-thin silicon chips for bendable electronics [C] // 2009 IEEE International Conference on IC Design and Technology. 2009: 149-154.
[24] SHAHRJERDI D, BEDELL S W. Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic [J]. Nano Letters, 2013, 13(1): 315-320.
[25] BURGHARTZ J N, APPEL W, HARENDT C, et al. Ultra-thin chip technology and applications, a new paradigm in silicon technology [J]. Solid-State Electronics, 2010, 54(9): 818-829.
[26] LANDESBERGER C, KLINK G, SCHWINN G, et al. New dicing and thinning concept improves mechanical reliability of ultra thin silicon [C] // Proceedings of IEEE International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces. 2001: 92-97.
[27] MICHAEL F, CHRISTOF L, ARMIN K, et al. Method of subdividing a wafer [P]. Europe: EP1192657B1, 2003.
[28] KOBAYASHI Y, PLANKENSTEINER M, HONDA M. Thin wafer handling and processing without carrier substrates [M] // Ultra-thin Chip Technology and Applications. New York: Springer, 2011: 45-51.
[29] BEDELL S W, FOGEL K, LAURO P, et al. Layer transfer by controlled spalling [J]. Journal of Physics D: Applied Physics, 2013, 46(15): 152002.
[30] SHAHRJERDI D, BEDELL S W. Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic [J]. Nano Lett, 2013, 13(1): 315-320.
[31] ZIMMERMANN M, BURGHARTZ J N, APPEL W, et al. A seamless ultra-thin chip fabrication and assembly process [C] // IEEE International Electron Devices Meeting. 2006: 1-3.
[32] BURGHARTZ J N, APPEL W, REMPP H D, et al. A new fabrication and assembly process for ultrathin chips [J]. IEEE Transactions on Electron Devices, 2009, 56(2): 321-327.
[33] DEKKER R, DMLING M, FOCK J H, et al. CIRCONFLEX: an ultra-thin and flexible technology for RF-ID tags [C] // 15th European Microelectronics and Packaging Conference and Exhibition, Brugge, Belgium. 2005: 268-271.
[34] CHRISTIAENS W, BOSMAN E, VANFLETEREN J. UTCP: a novel polyimide-based ultra-thin chip packaging technology [J]. IEEE Transactions on Components & Packaging Technologies, 2010, 33(4): 754-760.
[35] CHRISTIAENS W, LOEHER T, PAHL B, et al. Embedding and assembly of ultrathin chips in multilayer flex boards [J]. Circuit World, 2008, 34(3): 3-8.
[36] HASSAN M U, SCHOMBURG C, HARENDT C, et al. Assembly and embedding of ultra-thin chips in polymers [C] // 2013 IEEE Eurpoean Microelectronics Packaging Conference (EMPC). 2013: 1-6.
[37] ANGELOPOULOS E A, ZIMMERMANN M, APPEL W, et al. Ultra-thin chip technology for system-in-foil applications [C] // 2010 IEEE International Electron Devices Meeting. 2010: 251-254.
[38] AL-RAWHANI M A, BEELEY J, CHITNIS D, et al. Wireless capsule for autofluorescence detection in biological systems [J]. Sensors & Actuators B Chemical, 2013, 189: 203-207.
[39] Handbook of bioelectronics: directly interfacing electronics and biological systems [M]. Cambridge: Cambridge University Press, 2015.
[40] HWANG G T, IM D, LEE S E, et al. In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers [J]. Acs Nano, 2013, 7(5): 4545-4553.
[41] LIU Y, PHARR M, SALVATORE G A. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring [J]. Acs Nano, 2017, 11(10): 9614-9635.
[42] CHUNG H U, KIM B H, LEE J Y, et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care [J]. Science, 2019, 363(6430): eaau0780.
[43] KASEMSET B, ZENZ C, EIPER E, et al. Reliability modeling of IC package in smart card applications. Business line identification/operations BE innovation [R]. NXP Semiconductors Austria GmbH, 2009.
[44] SHI X, CAO J, LU T, et al. A survey on RFID security and privacy in smart medical: threats and protections [J]. IoTBDS, 2019: 278-285.
[45] GREEN M A, HISHIKAWA Y, WARTA W, et al. Solar cell efficiency tables (version 50) [J]. Progress in Photovoltaics: Research and Applications, 2017, 25(7): 668-676.
[46] HOCHBAUER T, MISRA A, VERDA R, et al. Hydrogen-implantation induced silicon surface layer exfoliation [J]. Philosophical Magazine B, 2000, 80(11): 1921-1931.
[47] NU′EZ C G, NAVARAJ W T, POLAT E O, et al. Energy-autonomous, flexible, and transparent tactile skin [J]. Advanced Functional Materials, 2017, 27(18): 1606287.
[48] SEVILLA G A T, INAYAT S B, ROJAS J P, et al. Flexible and semi-transparent thermoelectric energy harvesters from low cost bulk silicon (100) [J]. Small, 2013, 9(23): 3916-3921.
[49] BURGHARTZ J N, ALAVI G, ALBRECHT B, et al. Hybrid systems-in-foil-combining the merits of thin chips and of large-area electronics [J]. IEEE Journal of the Electron Devices Society, 2019, 7: 776-783.
[50] HASSAN M U, KECK J, KLAUK H, et al. Combining organic and printed electronics in hybrid system in foil (HySiF) based smart skin for robotic applications [C] // 2015 IEEE European Microelectronics Packaging Conference (EMPC). 2015: 1-6.
[51] ELSOBKY M, DEUBLE T, FERWANA S, et al. Characterization of on-foil sensors and ultra-thin chips for HySiF integration [J]. IEEE Sensors Journal, 2020, 20(14): 7595-7604.