• Laser & Optoelectronics Progress
  • Vol. 58, Issue 13, 1306015 (2021)
Shanshan Wang1, Yuxuan Xiao1, Jing Wang1、*, Yipeng Liao2、3, and Juncheng Zhang1、**
Author Affiliations
  • 1Optics and Optoelectronics Laboratory, School of Information Science and Engineering, Ocean University of China, Qingdao , Shandong 266100, China
  • 2School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan , Guangdong 523808, China
  • 3School of Physics, Xi'an Jiaotong University, Xi'an , Shaanxi 710049, China
  • show less
    DOI: 10.3788/LOP202158.1306015 Cite this Article Set citation alerts
    Shanshan Wang, Yuxuan Xiao, Jing Wang, Yipeng Liao, Juncheng Zhang. Development of Seawater Temperature , Salinity and Pressure Sensing Based on Interferometric Microfiber Device[J]. Laser & Optoelectronics Progress, 2021, 58(13): 1306015 Copy Citation Text show less
    References

    [1] Bi Y L, Sun Y, Huang M T et al. Progress and prospects of hydrographic surveying technology[J]. Hydrographic Surveying and Charting, 24, 65-70(2004).

    [2] Fan H B, Peng A, Qi M M. Research on expendable seawater conductivity measurement system[C], V1-115-V1-118(2010).

    [3] Zhang L, Ye S, Zhou S D et al. Review of measurement techniques for temperature, salinity and depth profile of sea water[J]. Marine Science Bulletin, 36, 481-489(2017).

    [5] Goes M, Goni G, Dong S F. An optimal XBT-based monitoring system for the South Atlantic meridional overturning circulation at 34°S[J]. Journal of Geophysical Research: Oceans, 120, 161-181(2015).

    [6] Huang T Y, Shao X G, Wu Z F et al. A sensitivity enhanced temperature sensor based on highly germania-doped few-mode fiber[J]. Optics Communications, 324, 53-57(2014).

    [7] Ma L, Kang Z X, Qi Y H et al. Fiber-optic temperature sensor based on a thinner no-core fiber[J]. Optik, 126, 1044-1046(2015).

    [8] Li B W, Liu Y G, Song X Y et al. High-sensitivity temperature sensor based on ultraviolet glue-filled silica capillary tube[J]. Journal of Modern Optics, 67, 1327-1333(2020).

    [9] Liu Y D, Jing X L, Chen H L et al. Highly sensitive temperature sensor based on Sagnac interferometer using photonic crystal fiber with circular layout[J]. Sensors and Actuators A: Physical, 314, 112236(2020).

    [10] Zhu J J, Zhang A P, Xia T H et al. Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer[J]. IEEE Sensors Journal, 10, 1415-1418(2010).

    [11] Tan Z, Liao C R, Liu S et al. Simultaneous measurement sensors of temperature and strain based on hollow core fiber and fiber Bragg grating[J]. Acta Optica Sinica, 38, 1206007(2018).

    [12] Dong H Y, Liu C N, Sun S M et al. Optical fiber high-temperature and refractive index sensor fabricated by femtosecond laser[J]. Laser & Optoelectronics Progress, 56, 170633(2019).

    [13] Zong S Y, Wen X Y, Zhang D S. Mach-Zehnder interferometer based on fiber core mismatch and core-offset splicing for the simultaneous sensing of temperature and refractive index[J]. Laser & Optoelectronics Progress, 57, 170607(2020).

    [14] Zhou X, Li S G, Li X G et al. High-sensitivity SPR temperature sensor based on hollow-core fiber[J]. IEEE Transactions on Instrumentation and Measurement, 69, 8494-8499(2020).

    [15] Wu C, Guan B O, Lu C et al. Salinity sensor based on polyimide-coated photonic crystal fiber[J]. Optics Express, 19, 20003-20008(2011).

    [16] Guzman-Sepulveda J R, Ruiz-Perez V I, Torres-Cisneros M et al. Fiber optic sensor for high-sensitivity salinity measurement[J]. IEEE Photonics Technology Letters, 25, 2323-2326(2013).

    [17] Meng Q Q, Dong X Y, Ni K et al. Optical fiber laser salinity sensor based on multimode interference effect[J]. IEEE Sensors Journal, 14, 1813-1816(2014).

    [18] Zhang W T, Li F, Liu Y L et al. Ultrathin FBG pressure sensor with enhanced responsivity[J]. IEEE Photonics Technology Letters, 19, 1553-1555(2007).

    [19] Song D C, Wei Z X, Zou J L et al. Pressure sensor based on fiber Bragg grating and carbon fiber ribbon-wound composite cylindrical shell[J]. IEEE Sensors Journal, 9, 828-831(2009).

    [20] Hou M X, Wang Y, Liu S H et al. Sensitivity-enhanced pressure sensor with hollow-core photonic crystal fiber[J]. Journal of Lightwave Technology, 32, 4637-4641(2014).

    [21] Tang J, Yin G L, Liao C R et al. High-sensitivity gas pressure sensor based on Fabry-Pérot interferometer with a side-opened channel in hollow-core photonic bandgap fiber[J]. IEEE Photonics Journal, 7, 1-7(2015).

    [22] Zhang Z, Liao C R, Tang J et al. High-sensitivity gas-pressure sensor based on fiber-tip PVC diaphragm Fabry-Pérot interferometer[J]. Journal of Lightwave Technology, 35, 4067-4071(2017).

    [23] Lin C M, Liu Y C, Liu W F et al. High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating[J]. IEEE Sensors Journal, 6, 691-696(2006).

    [24] Bai Y L, Qi Y H, Dong Y et al. Highly sensitive temperature and pressure sensor based on Fabry-Perot interference[J]. IEEE Photonics Technology Letters, 28, 2471-2474(2016).

    [25] Dong N N, Wang S M, Jiang L et al. Pressure and temperature sensor based on graphene diaphragm and fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 30, 431-434(2018).

    [26] Zhang L C, Jiang Y, Gao H C et al. Simultaneous measurements of temperature and pressure with a dual-cavity Fabry-Perot sensor[J]. IEEE Photonics Technology Letters, 31, 106-109(2019).

    [27] Wang X, Yang H J, Wang S S et al. Seawater temperature measurement based on a high-birefringence elliptic fiber Sagnac loop[J]. IEEE Photonics Technology Letters, 27, 1772-1775(2015).

    [28] Wang X, Wang J, Wang S S et al. Simultaneous measurement of dual-points seawater temperatures using highly-birefringent elliptical-core fibers[J]. Infrared Physics & Technology, 81, 170-174(2017).

    [29] Liu T Q, Wang J, Liao Y P et al. All-fiber Mach-Zehnder interferometer for tunable two quasi-continuous points' temperature sensing in seawater[J]. Optics Express, 26, 12277-12290(2018).

    [30] Yang F, Hlushko R, Wu D et al. Ocean salinity sensing using long-period fiber gratings functionalized with layer-by-layer hydrogels[J]. ACS Omega, 4, 2134-2141(2019).

    [31] Mollah M A, Yousufali M, Faysal R B A M et al. Highly sensitive photonic crystal fiber salinity sensor based on Sagnac interferometer[J]. Results in Physics, 16, 103022(2020).

    [32] Zhao Y, Wu Q L, Zhang Y N. Theoretical analysis of high-sensitive seawater temperature and salinity measurement based on C-type micro-structured fiber[J]. Sensors and Actuators B: Chemical, 258, 822-828(2018).

    [33] Sun M Y, Jiang H T, Shi B et al. Development of FBG salinity sensor coated with lamellar polyimide and experimental study on salinity measurement of gravel aquifer[J]. Measurement, 140, 526-537(2019).

    [34] Li H, Qian X L, Zheng W L et al. Theoretical and experimental characterization of a salinity and temperature sensor employing optical fiber surface plasmon resonance (SPR)[J]. Instrumentation Science & Technology, 48, 601-615(2020).

    [35] Akter S, Ahmed K, El-Naggar S A et al. Highly sensitive refractive index sensor for temperature and salinity measurement of seawater[J]. Optik, 216, 164901(2020).

    [36] Siyu E, Zhang Y N, Han B et al. Two-channel surface plasmon resonance sensor for simultaneous measurement of seawater salinity and temperature[J]. IEEE Transactions on Instrumentation and Measurement, 69, 7191-7199(2020).

    [37] Zhao Y, Wu Q L, Zhang Y N. Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber SPR sensor[J]. Measurement, 148, 106792(2019).

    [38] Wang Y J, Wang J F, Ren Q et al. Application of optical fiber temperature and pressure sensor in physical oceanography[J]. Oceanologia et Limnologia Sinica, 48, 1480-1487(2017).

    [39] Tong L M, Gattass R R, Ashcom J B et al. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature, 426, 816-819(2003).

    [40] Lou J Y, Tong L M, Ye Z Z. Modeling of silica nanowires for optical sensing[J]. Optics Express, 13, 2135-2140(2005).

    [41] Rinaudo P, Paya-Zaforteza I, Calderón P et al. Experimental and analytical evaluation of the response time of high temperature fiber optic sensors[J]. Sensors and Actuators A: Physical, 243, 167-174(2016).

    [42] Tong L M, Lou J Y, Mazur E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides[J]. Optics Express, 12, 1025-1035(2004).

    [43] Yang H J. The experimental study on seawater temperature sensing based on microfiber knot resonator[D](2017).

    [44] Tong L M, Zi F, Guo X et al. Optical microfibers and nanofibers: a tutorial[J]. Optics Communications, 285, 4641-4647(2012).

    [45] Lou J Y, Wang Y P, Tong L M. Microfiber optical sensors: a review[J]. Sensors, 14, 5823-5844(2014).

    [46] Yang L, Wang J, Wang S S et al. A new method to improve the sensitivity of nitrate concentration measurement in seawater based on dispersion turning point[J]. Optik, 205, 164202(2020).

    [47] Malitson I H. Interspecimen comparison of the refractive index of fused silica[J]. Journal of the Optical Society of America, 55, 1205-1209(1965).

    [48] Komma J, Schwarz C, Hofmann G et al. Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures[J]. Applied Physics Letters, 101, 041905(2012).

    [49] Schiebener P, Straub J, Levelt Sengers J M H et al. Refractive index of water and steam as function of wavelength, temperature and density[J]. Journal of Physical and Chemical Reference Data, 19, 677-717(1990).

    [50] Quan X H, Fry E S. Empirical equation for the index of refraction of seawater[J]. Applied Optics, 34, 3477-3480(1995).

    [51] Liao Y P. Seawater salinity measurement based on microfiber devices[D](2019).

    [52] Nagai R, Aoki T. Ultra-low-loss tapered optical fibers with minimal lengths[J]. Optics Express, 22, 28427-28436(2014).

    [53] Grellier A J C, Zayer N K, Pannell C N. Heat transfer modelling in CO2 laser processing of optical fibres[J]. Optics Communications, 152, 324-328(1998).

    [54] Dimmick T E, Kakarantzas G, Birks T A et al. Carbon dioxide laser fabrication of fused-fiber couplers and tapers[J]. Applied Optics, 38, 6845-6848(1999).

    [55] Brambilla G, Koizumi F, Feng X et al. Compound-glass optical nanowires[J]. Electronics Letters, 41, 400-402(2005).

    [56] Shi L, Chen X F, Liu H J et al. Fabrication of submicron-diameter silica fibers using electric strip heater[J]. Optics Express, 14, 5055-5060(2006).

    [57] Tong L M, Lou J Y, Ye Z Z et al. Self-modulated taper drawing of silica nanowires[J]. Nanotechnology, 16, 1445-1448(2005).

    [58] Tong L M, Hu L L, Zhang J J et al. Photonic nanowires directly drawn from bulk glasses[J]. Optics Express, 14, 82-87(2006).

    [59] Xu Y X, Fang W, Tong L M. Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision[J]. Optics Express, 25, 10434-10440(2017).

    [60] Fu J, Xu Y Y, Tang S F et al. Transverse multimode evolution in non-adiabatic optical micro/nanofiber tapers[J]. Chinese Physics Letters, 27, 014202(2010).

    [61] Wang J, Wang X, Wang S S et al. Method for preparing multi-mode interference exciting micro-nano optical fibers based on multi-step intermittent stretching[P].

    [62] Cheng X. Optical fiber tapering system[P].

    [63] Jiang X S, Tong L M, Vienne G et al. Demonstration of optical microfiber knot resonators[J]. Applied Physics Letters, 88, 223501(2006).

    [64] Sumetsky M. Optical fiber microcoil resonators[J]. Optics Express, 12, 2303-2316(2004).

    [65] Sumetsky M, Dulashko Y, Fini J M et al. Optical microfiber loop resonator[C], CMY1(2005).

    [66] Xu F, Horak P, Brambilla G. Optical microfiber coil resonator refractometric sensor[J]. Optics Express, 15, 7888-7893(2007).

    [67] Sumetsky M, Windeler R S, Dulashko Y et al. Optical liquid ring resonator sensor[J]. Optics Express, 15, 14376-14381(2007).

    [68] Guo X, Tong L M. Supported microfiber loops for optical sensing[J]. Optics Express, 16, 14429-14434(2008).

    [69] Wang S S, Wang J, Li G X et al. Modeling optical microfiber loops for seawater sensing[J]. Applied Optics, 51, 3017-3023(2012).

    [70] Yang H J, Wang S S, Wang X et al. Temperature sensing in seawater based on microfiber knot resonator[J]. Sensors, 14, 18515-18525(2014).

    [71] Yang H J, Liao Y P, Wang S S et al. Analysis of microfiber knot resonator spectrum for seawater temperature[J]. Spectroscopy and Spectral Analysis, 36, 2368-2372(2016).

    [72] Yang H J, Wang J, Wang S S. Numerical calculation of temperature sensing in seawater based on microfibre resonator by intensity-variation scheme[J]. Journal of the European Optical Society: Rapid Publications, 9, 14047(2014).

    [73] Yang H J, Wang J, Liao Y P et al. Dual-point seawater temperature simultaneous sensing based on microfiber double knot resonators[J]. IEEE Sensors Journal, 17, 2398-2403(2017).

    [74] Yang H J, Wang S S, Mao K N et al. Numerical calculation of seawater temperature sensing based on polydimethylsiloxane-coated microfiber knot resonator[J]. Optics and Photonics Journal, 4, 91-97(2014).

    [75] Liao Y P, Wang J, Yang H J et al. Salinity sensing based on microfiber knot resonator[J]. Sensors and Actuators A: Physical, 233, 22-25(2015).

    [76] Liao Y P, Wang X, Yang H J et al. Resonant mode characteristics of microfiber knot-type ring resonator and its salinity sensing experiment[J]. IEEE Photonics Journal, 7, 1-8(2015).

    [77] Li G X, Wang J, Yang H J et al. Simulation study of microring resonator for seawater salinity sensing with weak temperature dependence[J]. The European Physical Journal Applied Physics, 68, 20502(2014).

    [78] Liao Y P, Wang J, Wang S S et al. Simultaneous measurement of seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator[J]. Journal of Lightwave Technology, 34, 5378-5384(2016).

    [79] Zhu H, Wang Y Q, Li B J. Tunable refractive index sensor with ultracompact structure twisted by poly (trimethylene terephthalate) nanowires[J]. ACS Nano, 3, 3110-3114(2009).

    [80] Liao C R, Wang D N, He X Y et al. Twisted optical microfibers for refractive index sensing[J]. IEEE Photonics Technology Letters, 23, 848-850(2011).

    [81] Bo L, Wang P F, Semenova Y et al. High sensitivity fiber refractometer based on an optical microfiber coupler[J]. IEEE Photonics Technology Letters, 25, 228-230(2013).

    [82] Wang S S, Liao Y P, Yang H J et al. Modeling seawater salinity and temperature sensing based on directional coupler assembled by polyimide-coated micro/nanofibers[J]. Applied Optics, 54, 10283-10289(2015).

    [83] Wang S S, Yang H J, Liao Y P et al. High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler[J]. IEEE Photonics Journal, 8, 1-9(2016).

    [84] Yu Y, Bian Q, Lu Y et al. High sensitivity all optical fiber conductivity-temperature-depth (CTD) sensing based on an optical microfiber coupler (OMC)[J]. Journal of Lightwave Technology, 37, 2739-2747(2019).

    [85] Wang X, Wang J, Wang S S et al. Fiber-optic salinity sensing with a panda-microfiber-based multimode interferometer[J]. Journal of Lightwave Technology, 35, 5086-5091(2017).

    [86] Wang J, Liao Y P, Wang S S et al. Ultrasensitive optical sensing in aqueous solution based on microfiber modal interferometer[J]. Optics Express, 26, 24843-24853(2018).

    [87] Liu T Q, Wang J, Liao Y P et al. Splicing point tapered fiber Mach-Zehnder interferometer for simultaneous measurement of temperature and salinity in seawater[J]. Optics Express, 27, 23905-23918(2019).

    [88] Hou Y F, Wang J, Wang X et al. Simultaneous measurement of pressure and temperature in seawater with PDMS sealed microfiber Mach-Zehnder interferometer[J]. Journal of Lightwave Technology, 38, 6412-6421(2020).

    [89] Li Y, Wang J, Wang S S. Absolute salinity measurement based on microfiber coaxial Mach-Zehnder interferometer[J]. Journal of Coastal Research, 102, 194-201(2020).

    [90] Wen J H, Wang J, Yang L et al. Response time of microfiber temperature sensor in liquid environment[J]. IEEE Sensors Journal, 20, 6400-6407(2020).

    Shanshan Wang, Yuxuan Xiao, Jing Wang, Yipeng Liao, Juncheng Zhang. Development of Seawater Temperature , Salinity and Pressure Sensing Based on Interferometric Microfiber Device[J]. Laser & Optoelectronics Progress, 2021, 58(13): 1306015
    Download Citation