• Opto-Electronic Engineering
  • Vol. 48, Issue 8, 210080 (2021)
Lin Yuanqi1、2、*, Zhao Yiqiang1、2, Ye Mao1、2, Zheng Xiaoxiao1、2, and Du Jianyan1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.12086/oee.2021.210080 Cite this Article
    Lin Yuanqi, Zhao Yiqiang, Ye Mao, Zheng Xiaoxiao, Du Jianyan. Design of an integrated multi-line LiDAR analog front-end micromodule[J]. Opto-Electronic Engineering, 2021, 48(8): 210080 Copy Citation Text show less
    References

    [1] Y J. A wide dynamic range laser rangefinder with cm-level resolution based on AGC amplifier structure[J]. Infrared Phys Technol, 2012, 55(2–3): 210–215.

    [2] Castorena J, Creusere C D. Sampling of time-resolved full-waveform LIDAR signals at Sub-Nyquist rates[J]. IEEE Trans Geosci Remote Sens, 2015, 53(7): 3791–3802.

    [3] Allouis T, Bailly J S, Pastol Y, et al. Comparison of LiDAR waveform processing methods for very shallow water bathymetry using Raman, near-infrared and green signals[J]. Earth Surf Process Landforms, 2010, 35(6): 640–650.

    [4] Duong H V, Lefsky M A, Ramond T, et al. The electronically steerable flash lidar: a full waveform scanning system for topographic and ecosystem structure applications[J]. IEEE Trans Geosci Remote Sens, 2012, 50(11): 4809–4820.

    [7] Fersch T, Weigel R, K?lpin A. Comparison of laser safe scanning patterns for second generation LiDAR deflection units[C]//2017 18th International Radar Symposium, Prague, Czech Republic,2017: 1–9.

    [8] Ta T T, Kubota H, Kokubun K, et al. A 2D-SPAD array and read-out AFE for next-generation solid-state LiDAR[C]//2020 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 2020:1–2.

    [10] Albota M A, Heinrichs R M, Kocher D G, et al. Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser[J]. Appl Opt, 2002, 41(36):7671–7678.

    [11] Kameyama S, Hirai A, Imaki M, et al. Demonstration on range imaging of 256×256 pixels and 30 frames per second using short wavelength infrared pulsed time-of-flight laser sensor with linear array receiver[J]. Opt Eng, 2016, 56(3): 031214.

    [12] Hong C, Kim S H, Kim J H, et al. A Linear-Mode LiDAR sensor using a Multi-Channel CMOS transimpedance amplifier array[J].IEEE Sens J, 2018, 18(17): 7032–7040.

    [13] Ying G, Huang G H, Shu R. 3D imaging laser radar using Geiger-mode APDs: analysis and experiments[J]. Proc SPIE, 2010,7684: 768402.

    [15] Zhou G Q, Zhou X, Yang J Z, et al. Flash Lidar sensor using fiber-coupled APDs[J]. IEEE Sens J, 2015, 15(9): 4758–4768.

    [17] Hu K, Zhao Y Q, Ye M, et al. Design of a CMOS ROIC for In-GaAs self-mixing detectors used in FM/cw LADAR[J]. IEEE Sens J, 2017, 17(17): 5547–5557.

    [18] Crowell C R. Temperature dependence of avalanche multiplication in semiconductors[J]. Applied Physics Letters, 1966,ED-13(6): 242–244.

    [19] Zhang Z Y, Yu D S, Cai Y, et al. Design of APD double temperature compensation circuit with high gain stability[J]. Proc SPIE,2018, 10846: 108460Z.

    [20] Prokes A, Zerman V. Temperature compensation of the responsivity of avalanche photodiodes in free-space optical communication systems[C]//IEEE/Siberian Conference on Control and Communications, Tomsk, Russia, 2003: 102–107.

    [23] Tumati R. Solid-state nanopore characterization and low noise transimpedance amplifier for nanopore-based gene sequencer[D]. Maine: The University of Maine, 2008: 26–35.

    [24] Proke? A. Influence of temperature variation on optical receiver sensitivity and its compensation[J]. Radioengineering, 2007,16(3): 13–18.

    [25] Chuah J H, Holburn D. Low-noise transimpedance amplifier for pixelated CMOS photon detector in the scanning electron microscope[J]. IETE J Res, 2013, 59(3): 226–230.

    Lin Yuanqi, Zhao Yiqiang, Ye Mao, Zheng Xiaoxiao, Du Jianyan. Design of an integrated multi-line LiDAR analog front-end micromodule[J]. Opto-Electronic Engineering, 2021, 48(8): 210080
    Download Citation