• High Power Laser and Particle Beams
  • Vol. 33, Issue 8, 081002 (2021)
Xiaoling Ji and Yu Deng
Author Affiliations
  • Department of Physics, Sichuan Normal University, Chengdu 610068, China
  • show less
    DOI: 10.11884/HPLPB202133.210211 Cite this Article
    Xiaoling Ji, Yu Deng. Research progress on self-focusing effect of high-power laser beams propagating in inhomogeneous atmosphere[J]. High Power Laser and Particle Beams, 2021, 33(8): 081002 Copy Citation Text show less
    References

    [1] Klinkrad K. Space debris–models risk analysis[M]. Chichester: Praxis Publishing, 2006.

    [2] Campbell J W. Project ion: bital debris removal using groundbased senss lasers[R]. NASA Technical Memum 108522, 1996.

    [3] Early J T, Bibeau C, Phipps C. Space debris de-orbiting by vaporization impulse using short pulse laser[J]. AIP Conference Proceedings, 702, 190-204(2004).

    [4] Rubenchik A M, Barty C P J, Beach R J, et al. Laser systems for orbital debris removal[J]. AIP Conference Proceedings, 1278, 347-353(2010).

    [5] Phipps C R, Baker K L, Libby S B, et al. Removing orbital debris with lasers[J]. Advances in Space Research, 49, 1283-1300(2012).

    [6] Phipps C R. Laser ablation propulsion its applications in space[M]Ossi P M. Advances in the Application of Lasers in Materials Science. Cham: Springer, 2018: 217246.

    [7] Esmiller B, Jacquelard C, Eckel H A, et al. Space debris removal by ground-based lasers: main conclusions of the European project CLEANSPACE[J]. Applied Optics, 53, I45-I54(2014).

    [8] Lorbeer R A, Zwilich M, Zabic M, et al. Experimental verification of high energy laser-generated impulse for remote laser control of space debris[J]. Scientific Reports, 8, 8453(2018).

    [9] Phipps C R, Albrecht G, Friedman H, et al. ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser[J]. Laser and Particle Beams, 14, 1-44(1996).

    [10] Phipps C R Jr, Turner T P, Harrison R F, et al. Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers[J]. Journal of Applied Physics, 64, 1083-1096(1988).

    [12] Hong Yanji, Jin Xing, Wang Guangyu, et al. Laser spacedebris cleaning method[M]. Beijing: National Defense Industry Press, 2013

    [15] Rao Ruizhong. Modern atmospheric optics[M]. Beijing: Science Press, 2012

    [16] Wang Yingjian, Fan Chengyu, Wei Heli. Laser beam propagation applications through the atmosphere sea water[M]. Beijing: National Defense Industry Press, 2015

    [17] rews L C, Phillips R L. Laser beam propagation through rom media[M]. 2nd ed. Bellingham: SPIE Optical Engineering Press, 2005.

    [19] Rubenchik A M, Fedoruk M P, Turitsyn S K. The effect of self-focusing on laser space-debris cleaning[J]. Light: Science & Applications, 3, e159(2014).

    [20] Vaseva I A, Fedoruk M P, Rubenchik A M, et al. Light self-focusing in the atmosphere: thin window model[J]. Scientific Reports, 6, 30697(2016).

    [21] Zhang Yuqiu, Ji Xiaoling, Zhang Hao, et al. Self-focusing and group-velocity dispersion of pulsed laser beams in the inhomogeneous atmosphere[J]. Optics Express, 26, 14617-14625(2018).

    [22] Deng Yu, Ji Xiaoling, Yu Hong, et al. Uniform irradiation generated by beam self-focusing in the inhomogeneous atmosphere[J]. Optics Express, 27, 14585-14593(2019).

    [23] Wang Huan, Ji Xiaoling, Deng Yu, et al. Effect of spatial coherence on laser space-debris removal in the inhomogeneous atmosphere[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 235, 244-249(2019).

    [24] Fan Xiaoli, Ji Xiaoling, Wang Huan, et al. Self-focusing effect on the beam quality of Hermite-Gaussian beams propagating upwards through the inhomogeneous atmosphere[J]. Journal of the Optical Society of America A, 38, 168-173(2021).

    [25] Deng Yu, Wang Huan, Ji Xiaoling, et al. Characteristics of high-power partially coherent laser beams propagating upwards in the turbulent atmosphere[J]. Optics Express, 28, 27927-27939(2020).

    [26] Rubenchik A M, Fedoruk M P, Turitsyn S K. Laser beam self-focusing in the atmosphere[J]. Physical Review Letters, 102, 233902(2009).

    [27] Miller R I, Roberts T G. Laser self-focusing in the atmosphere[J]. Applied Optics, 26, 4570-4575(1987).

    [28] Talanov V I. Self focusing of wave beams in nonlinear media[J]. ZhETF Pisma Redaktsiiu, 2, 218(1965).

    [29] Kelley P L. Self-focusing of optical beams[J]. Physical Review Letters, 15, 1005-1008(1965).

    [30] Chiao R Y, Garmire E, Townes C H. Self-trapping of optical beams[J]. Physical Review Letters, 13, 479-482(1964).

    [31] Deng Hanling, Ji Xiaoling, Li Xiaoqing, et al. Effect of spherical aberration on laser beam self-focusing in the atmosphere[J]. Optics Letters, 40, 3881-3884(2015).

    [32] Deng Hanling, Ji Xiaoling, Li Xiaoqing, et al. Effect of spatial coherence on laser beam self-focusing from orbit to the ground in the atmosphere[J]. Optics Express, 24, 14429-14437(2016).

    [33] Zhang Yuqiu, Ji Xiaoling, Li Xiaoqing, et al. Self-focusing effect of annular beams propagating in the atmosphere[J]. Optics Express, 25, 21329-21341(2017).

    [34] Chekalin S V, Kandidov V P. From self-focusing light beams to femtosecond laser pulse filamentation[J]. Physics-Uspekhi, 56, 123-140(2013).

    [35] Rothenberg J E. Pulse splitting during self-focusing in normally dispersive media[J]. Optics Letters, 17, 583-585(1992).

    [36] Stassinakis A N, Nistazakis H E, Peppas K P, et al. Improving the availability of terrestrial FSO links over log normal atmospheric turbulence channels using dispersive chirped Gaussian pulses[J]. Optics & Laser Technology, 54, 329-334(2013).

    [37] Agrawal G P. Nonlinear fiber optics[M]Christiansen P L, Sørensen M P, Scott A C. Nonlinear Science at the Dawn of the 21st Century. Berlin: Springer, 2000: 195211.

    [38] Taha T R, Ablowitz M I. Analytical and numerical aspects of certain nonlinear evolution equations. III. Numerical, Korteweg-de Vries equation[J]. Journal of Computational Physics, 55, 231-253(1984).

    [39] Wang Huan, Ji Xiaoling, Zhang Hao, et al. Propagation formulae and characteristics of partially coherent laser beams in nonlinear media[J]. Optics Letters, 44, 743-746(2019).

    [40] Fan Xiaoli, Ji Xiaoling, Yu Hong, et al. Kerr effect on propagation characteristics of Hermite-Gaussian beams[J]. Optics Express, 27, 23112-23123(2019).

    [41] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 441, 47-189(2007).

    [42] Dickey F M. Laser beam shaping: they techniques[M]. 2nd ed. Boca Raton: CRC Press, 2014.

    [43] Dickey F M, Holswade S C, Shealy D L. Laser beam shaping applications[M]. Boca Raton: CRC Press, 2006.

    [44] Shealy D L. Histical perspective of laser beam shaping[C]Proceedings of SPIE 4770, Laser Beam Shaping III. 2002: 2847.

    [45] Pfalzner S. An introduction to inertial confinement fusion[M]. New Yk: CRC Press, 2006.

    [46] ITUR. On propagation data prediction methods required f the design of spacetoearth earthtospace optical communication systems[R]. Document 3J31E, 2001.

    [47] Ribak E N. Laser guide star projection f large telescopes[C]Proceedings of SPIE, Advances in Adaptive Optics II. 2006: 62724E.

    [48] Holzlöhner R, Rochester S M, Calia D B, et al. Optimization of CW sodium laser guide star efficiency[J]. Astronomy & Astrophysics, 510, A20(2010).

    Xiaoling Ji, Yu Deng. Research progress on self-focusing effect of high-power laser beams propagating in inhomogeneous atmosphere[J]. High Power Laser and Particle Beams, 2021, 33(8): 081002
    Download Citation