[1] Lu D R, Chen Z Y, Guo X et al. Recent progress in near space atmospheric environment study[J]. Advances in Mechanics, 39, 674-682(2009).
[2] Schunk R W, Nagy A F[M]. Ionospheres: Physics, Plasma Physics, and Chemistry(2000).
[3] Feldman P D, Doering J P. Auroral electrons and the optical emissions of nitrogen[J]. Journal of Geophysical Research, 80, 2808-2812(1975).
[4] Chakrabarti S. Ground based spectroscopic studies of sunlit airglow and aurora[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 60, 1403-1423(1998).
[5] Dothe H, Duff J W, Gruninger J H et al. Auroral radiance modeling with SAMM2[C], 7475, 67-73(2009).
[6] Heavner M J, Morrill J S, Siefring C et al. Near-ultraviolet and blue spectral observations of sprites in the 320-460 nm region: N2 (2PG) emissions[J]. Journal of Geophysical Research: Space Physics, 115, A00-44(2010).
[7] Kuo C L, Su H T, Hsu R R. The blue luminous events observed by ISUAL payload on board FORMOSAT-2 satellite[J]. Journal of Geophysical Research: Space Physics, 120, 9795-9804(2015).
[8] Stenbaek-Nielsen H C, McHarg M G, Haaland R et al. Optical spectra of small-scale sprite features observed at 10, 000 fps[J]. Journal of Geophysical Research: Atmospheres, 125, e2020JD033170(2020).
[9] Krupenie P H. The spectrum of molecular oxygen[J]. Journal of Physical and Chemical Reference Data, 1, 423-534(1972).
[10] Lofthus A, Krupenie P H. The spectrum of molecular nitrogen[J]. Journal of Physical and Chemical Reference Data, 6, 113-307(1977).
[11] Borst W L, Zipf E C. Cross section for electron-impact excitation of the (0, 0) first negative band of N2+ from threshold to 3 keV[J]. Physical Review A, 1, 834-840(1970).
[12] Srivastava B N. Emission cross section for the first negative band system of oxygen produced by electron impact[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 10, 1211-1217(1970).
[13] Finn T G, Aarts J F M, Doering J P. High energy-resolution studies of electron impact optical excitation functions I. The second positive system of N2[J]. Journal of Chemical Physics, 56, 5632-5636(1972).
[14] Schulman M B, Sharpton F A, Chung S et al. Emission from oxygen atoms produced by electron-impact dissociative excitation of oxygen molecules[J]. Physical Review A, 32, 2100-2116(1985).
[15] Van Zyl B, Pendleton W. N2+ (X), N2+ (A), and N2+ (B) production in e– + N2 collisions[J]. Journal of Geophysical Research: Space Physics, 100, 23755-23762(1995).
[16] Itikawa Y. Cross sections for electron collisions with nitrogen molecules[J]. Journal of Physical and Chemical Reference Data, 35, 31-53(2006).
[17] Meng X, Wu B, Gao X F et al. Vibrationally resolved photoemissions of N2 (C3Πu → B3Πg) and CO (b3Σ+ → a3Π) by low-energy electron impacts[J]. Journal of Chemical Physics, 153, 024301(2020).
[18] Deng L H, Li C L, He W Y et al. Rotational analysis and isotopic effects in the A2Πu - X2Πg system for the 18O2+ cation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 1547-1552(2012).
[19] Terrell C A, Hansen D L, Ajello J M. The near-ultraviolet and visible emission spectrum of O2 by electron impact[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 37, 1931-1949(2004).
[20] Mangina R S, Ajello J M, West R A et al. High-resolution electron-impact emission spectra and vibrational emission cross sections from 330-1100 nm for N2[J]. Astrophysical Journal Supplement Series, 196, 13(2011).
[21] Feuerstein B, Grum-Grzhimailo A N, Mehlhorn W. Electron impact excitation cross sections of sodium autoionizing state from threshold to 1.5 keV[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 31, 593-608(1998).
[22] Geng D P, Yang Y G, Liu S H et al. Design of an efficient monochromatic electron source for inverse photoemission spectroscopy[J]. Chinese Physics C, 38, 118202(2014).
[23] Šimek M. Optical diagnostics of streamer discharges in atmospheric gases[J]. Journal of Physics D: Applied Physics, 47, 463001(2014).
[24] Christensen A B, Rees M H, Romick G J et al. O I (7774 Ă) and O I (8446 Ă) emissions in aurora[J]. Journal of Geophysical Research: Space Physics, 83, 1421-1425(1978).
[25] Oyama S I, Tsuda T T, Hosokawa K et al. Auroral molecular-emission effects on the atomic oxygen line at 777.4 nm[J]. Earth, Planets and Space, 70, 166(2018).