• Chinese Journal of Quantum Electronics
  • Vol. 41, Issue 2, 215 (2024)
HE Ruiqi1,2,*, LIU Xiangnong1, WEN Zuoying2, GU Xuejun2..., ZHANG Weijun2, DAI Congming2, LI Jianyu2 and TANG Xiaofeng2|Show fewer author(s)
Author Affiliations
  • 1School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei 230009, China
  • 2Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2024.02.004 Cite this Article
    Ruiqi HE, Xiangnong LIU, Zuoying WEN, Xuejun GU, Weijun ZHANG, Congming DAI, Jianyu LI, Xiaofeng TANG. Development and preliminary application of electron⁃excited upper atmosphere radiation simulating setup[J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 215 Copy Citation Text show less
    References

    [1] Lu D R, Chen Z Y, Guo X et al. Recent progress in near space atmospheric environment study[J]. Advances in Mechanics, 39, 674-682(2009).

    [2] Schunk R W, Nagy A F[M]. Ionospheres: Physics, Plasma Physics, and Chemistry(2000).

    [3] Feldman P D, Doering J P. Auroral electrons and the optical emissions of nitrogen[J]. Journal of Geophysical Research, 80, 2808-2812(1975).

    [4] Chakrabarti S. Ground based spectroscopic studies of sunlit airglow and aurora[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 60, 1403-1423(1998).

    [5] Dothe H, Duff J W, Gruninger J H et al. Auroral radiance modeling with SAMM2[C], 7475, 67-73(2009).

    [6] Heavner M J, Morrill J S, Siefring C et al. Near-ultraviolet and blue spectral observations of sprites in the 320-460 nm region: N2 (2PG) emissions[J]. Journal of Geophysical Research: Space Physics, 115, A00-44(2010).

    [7] Kuo C L, Su H T, Hsu R R. The blue luminous events observed by ISUAL payload on board FORMOSAT-2 satellite[J]. Journal of Geophysical Research: Space Physics, 120, 9795-9804(2015).

    [8] Stenbaek-Nielsen H C, McHarg M G, Haaland R et al. Optical spectra of small-scale sprite features observed at 10, 000 fps[J]. Journal of Geophysical Research: Atmospheres, 125, e2020JD033170(2020).

    [9] Krupenie P H. The spectrum of molecular oxygen[J]. Journal of Physical and Chemical Reference Data, 1, 423-534(1972).

    [10] Lofthus A, Krupenie P H. The spectrum of molecular nitrogen[J]. Journal of Physical and Chemical Reference Data, 6, 113-307(1977).

    [11] Borst W L, Zipf E C. Cross section for electron-impact excitation of the (0, 0) first negative band of N2+ from threshold to 3 keV[J]. Physical Review A, 1, 834-840(1970).

    [12] Srivastava B N. Emission cross section for the first negative band system of oxygen produced by electron impact[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 10, 1211-1217(1970).

    [13] Finn T G, Aarts J F M, Doering J P. High energy-resolution studies of electron impact optical excitation functions I. The second positive system of N2[J]. Journal of Chemical Physics, 56, 5632-5636(1972).

    [14] Schulman M B, Sharpton F A, Chung S et al. Emission from oxygen atoms produced by electron-impact dissociative excitation of oxygen molecules[J]. Physical Review A, 32, 2100-2116(1985).

    [15] Van Zyl B, Pendleton W. N2+ (X), N2+ (A), and N2+ (B) production in e– + N2 collisions[J]. Journal of Geophysical Research: Space Physics, 100, 23755-23762(1995).

    [16] Itikawa Y. Cross sections for electron collisions with nitrogen molecules[J]. Journal of Physical and Chemical Reference Data, 35, 31-53(2006).

    [17] Meng X, Wu B, Gao X F et al. Vibrationally resolved photoemissions of N2 (C3Πu → B3Πg) and CO (b3Σ+ → a3Π) by low-energy electron impacts[J]. Journal of Chemical Physics, 153, 024301(2020).

    [18] Deng L H, Li C L, He W Y et al. Rotational analysis and isotopic effects in the A2Πu - X2Πg system for the 18O2+ cation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 1547-1552(2012).

    [19] Terrell C A, Hansen D L, Ajello J M. The near-ultraviolet and visible emission spectrum of O2 by electron impact[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 37, 1931-1949(2004).

    [20] Mangina R S, Ajello J M, West R A et al. High-resolution electron-impact emission spectra and vibrational emission cross sections from 330-1100 nm for N2[J]. Astrophysical Journal Supplement Series, 196, 13(2011).

    [21] Feuerstein B, Grum-Grzhimailo A N, Mehlhorn W. Electron impact excitation cross sections of sodium autoionizing state from threshold to 1.5 keV[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 31, 593-608(1998).

    [22] Geng D P, Yang Y G, Liu S H et al. Design of an efficient monochromatic electron source for inverse photoemission spectroscopy[J]. Chinese Physics C, 38, 118202(2014).

    [23] Šimek M. Optical diagnostics of streamer discharges in atmospheric gases[J]. Journal of Physics D: Applied Physics, 47, 463001(2014).

    [24] Christensen A B, Rees M H, Romick G J et al. O I (7774 Ă) and O I (8446 Ă) emissions in aurora[J]. Journal of Geophysical Research: Space Physics, 83, 1421-1425(1978).

    [25] Oyama S I, Tsuda T T, Hosokawa K et al. Auroral molecular-emission effects on the atomic oxygen line at 777.4 nm[J]. Earth, Planets and Space, 70, 166(2018).

    Ruiqi HE, Xiangnong LIU, Zuoying WEN, Xuejun GU, Weijun ZHANG, Congming DAI, Jianyu LI, Xiaofeng TANG. Development and preliminary application of electron⁃excited upper atmosphere radiation simulating setup[J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 215
    Download Citation