• Frontiers of Optoelectronics
  • Vol. 5, Issue 2, 127 (2012)
Sei-Min KIM, Seon-Ho JANG, and Ja-Soon JANG*
Author Affiliations
  • Department of Electronic Engineering, LED-IT Fusion Technology Research Center (LIFTRC), Yeungnam University, Gyeongbuk 712-749, Korea
  • show less
    DOI: 10.1007/s12200-012-0256-z Cite this Article
    Sei-Min KIM, Seon-Ho JANG, Ja-Soon JANG. High-performance and current crowding-free InGaN-GaN based LEDs integrated by an electrically-reverse-connected Schottky diode and a Mg-delta doped p-GaN[J]. Frontiers of Optoelectronics, 2012, 5(2): 127 Copy Citation Text show less
    References

    [1] Nakamura S, Senoh S, Iwasa N, Nagahama S. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Japanese Journal of Applied Physics, 1995, 34(Part 2, No. 7A): L797-L799

    [2] Pearton S J, Zolper J C, Shul R J, Ren F. GaN: processing, defects, and devices. Journal of Applied Physics, 1999, 86(1): 1-78

    [3] Guo X, Schubert E F. Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates. Applied Physics Letters, 2001, 78(21): 3337

    [4] Wu J Q. When group-III nitrides go infrared: new properties and perspectives. Journal of Applied Physics, 2009, 106(1): 011101

    [5] Sheu J K, Chi G C, Jou M J. Low-operation voltage of InGaN/GaN light-emitting diodes by using a Mg-doped Al0.15Ga0.85N/GaN superlattice. IEEE Electron Device Letters, 2001, 22(4): 160-162

    [6] Jang J S, Kim D, Seong T Y. Low turn-on voltage and series resistance of polarization-induced InGaN-GaN LEDs by using p-InGaN/p-GaN superlattice. IEEE Photonics Technology Letters, 2006, 18(4): 1536-1538

    [7] Jang J S, Sohn S J, Kim D, Seong T Y. Formation of low-resistance transparent Ni/Au ohmic contacts to a polarization field-induced p-InGaN/GaN superlattice. Semiconductor Science and Technology, 2006, 21(5): L37-L39

    [8] Liu Y J, Tsai T Y, Yen C H, Chen L Y, Tsai T H, Liu W C. Characteristics of a GaN-based light-emitting diode with an inserted p-GaN/i-InGaN superlattice structure. IEEE Journal of Quantum Electronics, 2010, 46(4): 492-498

    [9] Liu Y J, Guo D F, Chu K Y, Cheng S Y, Liou J K, Chen LY, Tsai T H, Huang C C, Chen T Y, Hsu C S, Tsai T Y, Liu W C. Improved current-spreading performance of an InGaN-based light-emitting diode with a clear p-GaN/n-GaN barrier junction. Displays, 2011, 32(5): 330-333

    [10] Jang J S. High output power GaN-based light-emitting diodes using an electrically reverse-connected p-Schottky diode and p-InGaN-GaN superlattice. Applied Physics Letters, 2008, 93(8): 081118

    [11] Hsu C Y, Lan W H, Wu W S. Effect of thermal annealing of Ni/Au ohmic contact on the leakage current of GaN based light emitting diodes. Applied Physics Letters, 2003, 83(12): 2447

    [12] Li D S, Chen H, Yu H B, Jia H Q, Huang Q, Zhou J M. Dependence of leakage current on dislocations in GaN-based light-emitting diodes. Journal of Applied Physics, 2004, 96(2): 1111

    [13] Lin Y J. Application of the thermionic field emission model in the study of a Schottky barrier of Ni on p-GaN from current-voltage measurements. Applied Physics Letters, 2005, 86(12): 122109

    [14] Pan Y B, Yang Z J, Lu Y, Lu M, Hu C Y, Yu T J, Hu X D, Zhang C Y. Improvement of properties of p-GaN by Mg delta doping. Chinese Physics Letters, 2004, 21(10): 2016

    [15] Wang H, Liu J, Niu N, Shen G, Zhang S. Enhanced performance of p-GaN by Mg doping. Journal of Crystal Growth, 2007, 304(1): 7-10

    [16] Bayram C, Pau J L, McClintock R, Razeghi M. Delta-doping optimization for high quality p-type GaN. Journal of Applied Physics, 2008, 104(8): 083512

    [17] Park H Y, Jeon K N, Kim K. Mg delta-doping effect on a deep hole center related to electrical activation of a p-type GaN thin film. Transactions on Electrical and Electronic Materials, 2010, 11(1): 37-41

    [18] Marlow G S, Das M B. The effects of contact size and non-zero metal resistance on the determination of specific contact resistance. Solid-State Electronics, 1982, 25(2): 91-94

    [19] Jang J S, Seong T Y, Jeon S R. Formation mechanisms of lowresistance and thermally stable Pd∕Ni∕Pd∕Ru Ohmic contacts to Mg-doped Al0.15Ga0.85N. Applied Physics Letters, 2007, 91(9): 092129

    [20] Jang J S, Seong T Y. Electronic transport mechanisms of nonalloyed Pt Ohmic contacts to p-GaN. Applied Physics Letters, 2000, 76(19): 2743

    [21] Jang S H, Jang J S. Carrier transport mechanism at the interface between metals and p-type III-nitrides having different surface electronic structure. Japanese Journal of Applied Physics (in press)

    [22] Jang J S, Chang I S, Kim H K, Seong T Y, Lee S H, Park S J. Lowresistance Pt/Ni/Au ohmic contacts to p-type GaN. Applied Physics Letters, 1999, 74(1): 70

    Sei-Min KIM, Seon-Ho JANG, Ja-Soon JANG. High-performance and current crowding-free InGaN-GaN based LEDs integrated by an electrically-reverse-connected Schottky diode and a Mg-delta doped p-GaN[J]. Frontiers of Optoelectronics, 2012, 5(2): 127
    Download Citation