• Chinese Journal of Quantum Electronics
  • Vol. 20, Issue 1, 10 (2003)
[in Chinese]
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    [in Chinese]. Progress in the Study of High Brightness Blue GaN-based LEDs[J]. Chinese Journal of Quantum Electronics, 2003, 20(1): 10 Copy Citation Text show less
    References

    [1] Strite S, Morkoc H. GaN, AlN and InN: A review [J]. Jvac Sci Technol, 1992, B34:1237

    [3] Dryburgh P M. The selection of substrates for the heteroepitaxy of high-gap semiconductor [J]. Journal of Materials Science: Materials in Electronics, 1998, 9:237

    [4] Nakamura S. GaN growth using GaN buffer layer [J]. J. Appl. Phys., 1991, 30(10): L1705~L1707

    [5] Amano H, Sawaki N, Akasaki I. MOCVD grown of a high quality GaN film using AlN buffer layer [J]. Appl.Phys. Lett., 1986, 48:353

    [6] Nakamura S, Mukai T, Seno M. High power GaN p-n junction blue LED [J]. JPN J. Phys., 1991, 30:L1998

    [7] Amano H, Kito M, Hiramatsn K et al. P-type conduction in Mg-doped GaN treated with low engergy electron beam irradiation (LEEBI) [J]. JPN J. APP: Phys., 1989, 28:L2112

    [8] Nakamura S, Isawa N, Seno M et al. Hole compensation mechanism of p-type GaN films. Jappl Phys., 1992, 31:12587

    [9] Gobz W, Johnson N M, Walker J et al. Activation of acceptors in Mg-doped GaN grown by MOCVD [J]. Appl.Phys. Lett., 1996, 68(5): 667

    [10] Sze S M. Physics of Semiconductor Devices [M]. New York: Jnhn Wiley & Sons, Inc, 1981. 245

    [11] Yoshinoto N, Metsuoka T, Sasaki T et al. Photo-luminescence of InGaN grown at high temperature by MOCVD [J]. Appl. Phys. Lett., 1991, 59:2251

    [12] Nakamura S. Zn-doped InGaN growth and InGaN/A1GaN double-heterostructure blue LEDs [J]. J. of Crystal Growth, 1994, 145:911

    [14] Tong Y Z, Li F, Zhang G Y et al. Growth and doping characteristics of InGaN films grown by LP-MOCVD [J].Solid State Commun., 1999, 109(3): 173

    [15] Nakamura S, Fasol G. The Blue Laser Diodes [M]. Germany: Printed by Springer, 1997.

    [16] Luther B P et al. Investigation of the mechanism for ohmic contact formation in Al and Ti/Al contacts to n-type GaN [J]. Appl. Phys. Lett., 1997, 70(1): 57

    [17] Schmetz A C et al. Metal contacts to n-type GaN [J]. J Electron Mater, 1998, 27(24): 255

    [18] Jang J S, Chang I S, Kim H. Low resistance pt/Ni/Au ohmic contact to p-type GaN [J]. Appl. Phys. Lett.,1999, 74(1): 70

    [19] Youn D H et al. Ohmic contact to p-type GaN [J]. J. Jappl Phys., 1998, 37(4A)part1:1768

    [20] Shul R J, Kilcoyne S P, Hagerott M et al. High Temperature Electron Cyclotron Resonance Etching of GaN,InN, AlN [J]. Appl Phys. Lett., 1995, 66:1761

    [21] Adesida I, Ping A T, Youtseg C et al. Characteristics of chemically assistecl ion beam etching of GaN [J]. Appl.Phys. Lett., 1994, 65:889

    [22] Melane G E, Casas H, Deatron S J et al. High etch rates of GaN with magnetron reactive ion etching BCl3 plasmas [J]. Appl. Phys. Lett., 1995, 66:3328

    [23] Nakamura S, Mukai T, Seno M. Candela-class-high brightness InGaN/A1GaN double-heterrostructure blue LEDs [J]. Appl. Phys. Lett., 1994, 64:1687

    [24] Cook J JW, Schetzina J F. Blue-green LEDs promise full-color dispays [J]. Laser Focus World, 1995, 31(3): 101

    [25] Nakamara S, Senoh M, Iwasa N et al. Superbright green InGaN single quantum-well-structure LEDs [J].

    [in Chinese]. Progress in the Study of High Brightness Blue GaN-based LEDs[J]. Chinese Journal of Quantum Electronics, 2003, 20(1): 10
    Download Citation