• Chinese Journal of Lasers
  • Vol. 47, Issue 5, 0502003 (2020)
Xiayu Chen, Weidong Huang*, Weijie Zhang, Zhangpeng Lai, and Guofu Lian
Author Affiliations
  • School of Mechanical and Automotive Engineering, Fujian University of Technology, Fuzhou, Fujian 350108, China
  • show less
    DOI: 10.3788/CJL202047.0502003 Cite this Article Set citation alerts
    Xiayu Chen, Weidong Huang, Weijie Zhang, Zhangpeng Lai, Guofu Lian. Multiple Targets Technology Optimization Based Grey Relative Analysis of 18Ni300 Die Steel Formed by Selective Laser Melting[J]. Chinese Journal of Lasers, 2020, 47(5): 0502003 Copy Citation Text show less
    Structural representation of SLM forming equipment
    Fig. 1. Structural representation of SLM forming equipment
    SEM image of 18Ni300 die steel powder
    Fig. 2. SEM image of 18Ni300 die steel powder
    Direction of choosing measuring points of hardness
    Fig. 3. Direction of choosing measuring points of hardness
    Forming samples
    Fig. 4. Forming samples
    Normal probability plot of prediction model
    Fig. 5. Normal probability plot of prediction model
    Residual plot of prediction model
    Fig. 6. Residual plot of prediction model
    Main effect plots of relative density
    Fig. 7. Main effect plots of relative density
    Metallurgy porosity in sample No.22
    Fig. 8. Metallurgy porosity in sample No.22
    Contrast of normal weld and sunk weld. (a) Normal weld; (b) sunk weld
    Fig. 9. Contrast of normal weld and sunk weld. (a) Normal weld; (b) sunk weld
    Powder bed diagram of powder thickness over the range of particle size
    Fig. 10. Powder bed diagram of powder thickness over the range of particle size
    Main effect plots of hardness
    Fig. 11. Main effect plots of hardness
    SEM image of experiment sample No.18
    Fig. 12. SEM image of experiment sample No.18
    Main effect plots of wear resistance
    Fig. 13. Main effect plots of wear resistance
    Surface wear morphology of sample No.28
    Fig. 14. Surface wear morphology of sample No.28
    Response optimized plot of GRG
    Fig. 15. Response optimized plot of GRG
    Internal morphology of verified sample
    Fig. 16. Internal morphology of verified sample
    ElementCSPSiMnAlTiMoCoNiFe
    Mass fraction /%0.030.010.010.10.10.150.85.209.5018Bal.
    Table 1. Chemical composition of 18Ni300 die steel powder
    ParameterSymbolLevel of parameter
    Level 1Level 2Level 3Level 4Level 5
    Laser power /WA150200250300350
    Scanning speed /(mm·s-1)B650700750800850
    Hatching distance /mmC0.050.080.110.140.17
    Powder coating thickness /mmD0.020.030.040.050.06
    Table 2. Levels of experiment parameters
    No.Forming parameterResponse value
    A /WB /(mm·s-1)C /mmD /mmRelativedensity (RD) /%Hardness(HD) /HRCWear resistance(WR) /μm3
    13008000.080.0399.827.6430780
    23507500.110.0499.935.51226820
    32507500.110.0498.239.7883720
    43007000.140.0597.543.4533680
    52007000.140.0593.833.5450080
    62507500.110.0499.239.11081940
    72007000.080.0596.640.1513880
    83007000.080.0599.442.91454260
    92008000.140.0596.033.61825140
    101507500.110.0493.238.3845880
    113008000.080.0599.636.5648780
    122007000.080.0398.540.91901920
    132507500.110.0299.936.1915040
    142506500.110.0499.436.5998560
    152507500.050.0498.737.3831540
    163007000.140.0399.639.3156060
    173008000.140.0595.739.2816140
    182008000.080.0399.940.9917560
    193007000.080.0399.739.0860520
    202507500.110.0699.840.7818740
    213008000.140.0396.138.1600280
    222008000.080.0594.038.2621960
    232007000.140.0397.939.71461940
    242008000.140.0392.237.11505180
    252507500.110.0495.840.6651760
    262507500.110.0494.941.1604780
    272508500.110.0495.140.6415180
    282507500.110.0498.837.3765940
    292507500.110.0498.839.0724240
    302507500.170.0492.040.7290960
    Table 3. Data of forming samples
    ParameterPrincipalcomponent 1Principalcomponent 2Principalcomponent 3EigenvalueContribution /%
    Relative density-0.6810.072-0.7281.191039.7
    Hardness0.4170.856-0.3050.975832.5
    Wear resistance0.601-0.512-0.6130.833227.8
    Table 4. Principal component analysis results
    No.NormalizationGRCGRG
    RDHDWRRDHDWR
    10.012658210.15735510.97530860.33333330.76062390.7070
    200.50.613313810.50.44910970.6844
    30.21518980.23417720.41679180.69911500.68103450.54538010.6505
    40.303797400.21629450.622047210.69803690.7660
    50.77215180.62658220.16840980.39303480.44382020.74804400.5082
    60.08860750.27215180.53032890.84946240.64754100.48528190.6826
    70.41772150.20886070.20495340.54482760.70535710.70926670.6427
    80.06329110.0316450.74358770.88764050.94047620.40206250.7698
    90.49367080.62025310.95602170.50318470.44632770.34340150.4403
    100.84810120.32278480.39511760.37089200.60769230.55858580.5000
    110.03797460.43670880.28222190.92941180.53378380.63920480.7202
    120.17721510.158227810.73831780.75961540.33333330.6327
    1300.46202530.434731310.51973680.53491310.7146
    140.06329110.43670890.48257020.88764040.53378380.50886950.6673
    150.15189870.38607590.38690390.76699030.56428570.56375900.6446
    160.03797460.259493700.92941180.658333310.8609
    170.531645570.26582280.37808300.48466260.65289260.56942220.5629
    1800.15822780.436174710.75961540.53408830.7924
    190.02531640.27848100.40350310.95180720.64227640.55340150.7405
    200.01265820.17088610.37957220.97530860.74528300.56845810.7874
    210.48101260.33544300.25444190.50967740.59848480.66274150.5811
    220.7468354430.3291139240.2668598860.40101520.60305340.65200960.5365
    230.2531645570.2341772150.7479866660.66386550.68103450.40064530.5963
    240.9746835440.3987341770.7727538290.33905580.55633800.39284890.4246
    250.5189873420.177215190.2839288370.49068320.73831780.63781300.6121
    260.6329113920.145569620.2570194630.44134080.77450980.6604850.6105
    270.6075949370.177215190.148419690.45142860.73831780.77110550.6335
    280.1392405060.3860759490.349329270.78217820.56428570.58869980.6576
    290.1392405060.2784810130.3254441940.78217820.64227640.60573450.6877
    3010.1708860760.077268510.33333330.74528300.86614810.6153
    Table 5. Result ofexperimental data processing
    SourceDegree of freedomSum of squareMean squareFP
    Prediction model140.2403640.0171693.910.006
    Error150.0658230.004388
    Total290.306187
    Standard deviationR2=78.50%
    Table 6. Variance analysis of prediction model
    Xiayu Chen, Weidong Huang, Weijie Zhang, Zhangpeng Lai, Guofu Lian. Multiple Targets Technology Optimization Based Grey Relative Analysis of 18Ni300 Die Steel Formed by Selective Laser Melting[J]. Chinese Journal of Lasers, 2020, 47(5): 0502003
    Download Citation