• Spectroscopy and Spectral Analysis
  • Vol. 40, Issue 11, 3365 (2020)
Xiao-feng CAO1、1、*, Ke-qiang YU1、1, Yan-ru ZHAO1、1, and Hai-hui ZHANG1、1
Author Affiliations
  • 1[in Chinese]
  • 11. College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
  • show less
    DOI: 10.3964/j.issn.1000-0593(2020)11-3365-08 Cite this Article
    Xiao-feng CAO, Ke-qiang YU, Yan-ru ZHAO, Hai-hui ZHANG. Current Status of High-Throughput Plant Phenotyping for Abiotic Stress by Imaging Spectroscopy: A REVIEW[J]. Spectroscopy and Spectral Analysis, 2020, 40(11): 3365 Copy Citation Text show less
    High-throughput phenotyping platforms accelerate crop improvement[14]
    Fig. 1. High-throughput phenotyping platforms accelerate crop improvement[14]
    Phenotype visualization under BF and GF of control and drought treated plants
    Fig. 2. Phenotype visualization under BF and GF of control and drought treated plants
    Visualization of SA concentration in WT and TG maize under herbicide treatments
    Fig. 3. Visualization of SA concentration in WT and TG maize under herbicide treatments
    TechniqueSpectrum RangeSpectral Data TypePhenotype TargetedReference
    可见光成像(RGB)400~700 nm红绿蓝3个波段强度分布信息结构/形态/几何参数/颜色等[3-5]
    多光谱成像(MSI)紫外-近红外有限的离散光谱和宽带光谱植被指数水分/色素/覆盖度/生物量等[8, 12, 15]
    高光谱成像(HSI)紫外-近红外连续高分辨率的光谱和功能丰富的光谱植被指数色素/养分等丰富的性状[1, 3, 5, 16 ]
    叶绿素荧光成像(ChlFI)600~800 nm叶绿素荧光动力学参数等叶绿素/光合状态/光量子效率[2, 5, 7]
    多光谱荧光成像(MFI)440~800 nm有限的离散荧光光谱和参数酚类/苷类等次级代谢产物等[12, 19]
    热红外成像(TIRI)3~5或7.5~13.5 μm主要提供光谱空间强度分布信息气孔导度/冠层温度[2-3, 14, 17]
    Table 1. Imaging spectroscopy techniques and their application characteristics
    PlantStressTechniqueTraits Acquired & AnalyzedReference
    辣椒干旱热红外/高光谱产量/叶绿素/含水量[41]
    葡萄干旱高光谱叶片水势/气孔导度等[33]
    拟南芥干旱叶绿素/多光谱荧光形态/气孔导度/丙二醛[19]
    斑豆干旱多光谱作物产量[42]
    桃树干旱热红外叶片温度[43]
    枣椰树盐胁迫RGB植被覆盖度[44]
    生菜盐胁迫高光亲渗透势/含水量[45]
    小麦低温日光诱导荧光产量年际变化[36]
    番茄低温叶绿素荧光空间异质性[46]
    玉米/大豆营养胁迫高光谱水分/营养元素[38]
    大豆缺铁褪绿病RGB颜色性状[39]
    水稻钾肥RGB颜色/面积等[47]
    马铃薯氮/钾等RGB颜色等性状/出苗率[48]
    芋属/甘薯除草剂/干旱日光诱导荧光净光合速率[40]
    鹅掌柴干旱/氮叶绿素荧光/[49]
    番茄干旱/养分等叶绿素荧光/多光谱叶片水势/总氮[34]
    苔藓重金属叶绿素荧光/[35]
    生菜温度/盐胁迫高光谱/叶绿素荧光色素/生长/光合[36]
    梨树干旱/高温热红外气孔导度/冠层温度[50]
    Table 2. Studies on abiotic stress monitoring of plants by imaging spectroscopy
    PlantObjectiveTechniqueTraits Acquired & AnalyzedReference
    水稻抗旱筛选RGB结构形态性状[51]
    小麦抗旱筛选多光谱/热红外/[52]
    大豆耐旱鉴定热红外冠层温度[53]
    杨树抗旱筛选热红外冠层温度/气孔导度[54]
    小麦抗盐筛选高光谱形态性状[55]
    大豆耐盐鉴定RGB形态/颜色/纹理/叶绿素等[56]
    番茄抗盐筛选RGB/多光谱植物面积/生长速率[57]
    玉米抗倒伏筛选RGB株高/纹理形态[58]
    大麦耐盐鉴定高光谱颜色性状[59]
    大豆抗IDC筛选RGB/近红外颜色特征[60]
    蚕豆抗除草剂筛选多光谱生长和颜色性状[61]
    玉米耐除草剂鉴定高光谱/叶绿素荧光莽草酸浓度[25]
    玉米抗寒筛选高光谱/[62]
    Table 3. Studies on screening & identification of plant varieties by imaging spectroscopy
    Xiao-feng CAO, Ke-qiang YU, Yan-ru ZHAO, Hai-hui ZHANG. Current Status of High-Throughput Plant Phenotyping for Abiotic Stress by Imaging Spectroscopy: A REVIEW[J]. Spectroscopy and Spectral Analysis, 2020, 40(11): 3365
    Download Citation