• Infrared and Laser Engineering
  • Vol. 50, Issue 12, 20210657 (2021)
Wei Tan, Xianwei Huang, Teng Jiang, Qin Fu, Suqin Nan, Xuanpengfan Zou, Yanfeng Bai, and Xiquan Fu*
Author Affiliations
  • College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
  • show less
    DOI: 10.3788/IRLA20210657 Cite this Article
    Wei Tan, Xianwei Huang, Teng Jiang, Qin Fu, Suqin Nan, Xuanpengfan Zou, Yanfeng Bai, Xiquan Fu. Research on the effect of noise-containing signal light on correlated imaging in complex environment (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210657 Copy Citation Text show less
    References

    [1] D N Klyshko. Two-photon light: Influence of filtration and a new possible EPR experiment. Physics Letters A, 128, 133-137(1988).

    [2] T B Pittman, Y H Shih, D V Strekalov, et al. Optical imaging by means of two-photon quantum entanglement. Physical Review A, 52, R3429-R3432(1995).

    [3] D V Strekalov, A V Sergienko, D N Klyshko, et al. Observation of two-photon "ghost" interference and diffraction. Physical Review Letters, 74, 3600-3603(1995).

    [4] T B Pittman, D V Strekalov, D N Klyshko, et al. Two-photon geometric optics. Physical Review A, 53, 2804-2815(1996).

    [5] P H S Ribeiro, G A Barbosa. Direct and ghost interference in double-slit experiments with coincidence measurements. Physical Review A, 54, 3489-3492(1996).

    [6] G A Barbosa. Quantum images in double-slit experiments with spontaneous down-conversion light. Physical Review A, 54, 4473-4478(1996).

    [7] T B Pittman, D V Strekalov, A Migdall, et al. Can two-photon interference be considered the interference of two photons. Physical Review Letters, 77, 1917-1920(1996).

    [8] E J S Fonseca, C H Monken, S Pádua. Measurement of the de Broglie wavelength of a multiphoton wave packet. Physical Review Letters, 82, 2868-2871(1999).

    [9] E J S Fonseca, P H S Ribeiro, S Pádua, et al. Quantum interference by a nonlocal double slit. Physical Review A, 60, 1530-1533(1999).

    [10] M D’Angelo, M V Chekhova, Y H Shih. Two-photon diffraction and quantum lithography. Physical Review Letters, 87, 013602(2001).

    [11] A F Abouraddy, B E A Saleh, A V Sergienko, et al. Role of entanglement in two-photon imaging. Physical Review Letters, 87, 123602(2001).

    [12] R S Bennink, S J Bentley, R W Boyd. "Two-photon" coincidence imaging with a classical source. Physical Review Letters, 89, 113601(2002).

    [13] J Cheng, S S Han. Incoherent coincidence imaging and its applicability in X-ray diffraction. Physical Review Letters, 92, 093903(2004).

    [14] A Gatti, E Brambilla, M Bache, et al. Ghost imaging with thermal light: Comparing entanglement and classical correlation. Physical Review Letters, 93, 093602(2004).

    [15] A Gatti, E Brambilla, M Bache, et al. Correlated imaging, quantum and classical. Physical Review A, 70, 235-238(2004).

    [16] A Valencia, G Scarcelli, M D’Angelo, et al. Two-photon imaging with thermal light. Physical Review Letters, 94, 063601(2005).

    [17] D Zhang, Y H Zhai, L A Wu, et al. Correlated two-photon imaging with true thermal light. Optics Letters, 30, 2354-2356(2005).

    [18] D Z Cao, J Xiong, K G Wang. Geometrical optics in correlated imaging systems. Physical Review A, 71, 13801(2005).

    [19] J Xiong, D Z Cao, F Huang, et al. Experimental observation of classical subwavelength interference with a pseudothermal light source. Physical Review Letters, 94, 173601(2005).

    [20] Y J Cai, S Y Zhu. Ghost imaging with incoherent and partially coherent light radiation. Physical Review E, 71, 056607(2005).

    [21] F Ferri, D Magatti, A Gatti, et al. High-resolution ghost image and ghost diffraction experiments with thermal light. Physical Review Letters, 94, 183602(2005).

    [22] M D’Angelo, A Valencia, M H Rubin, et al. Resolution of quantum and classical ghost imaging. Physical Review A, 72, 013810(2005).

    [23] Y H Zhai, X H Chen, D Zhang, et al. Two-photon interference with true thermal light. Physical Review A, 72, 043805(2005).

    [24] G Scarcelli, V Berardi, Y H Shih. Phase-conjugate mirror via two-photon thermal light imaging. Applied Physics Letters, 88, 061106(2006).

    [25] L Basano, P Ottonello. Experiment in lensless ghost imaging with thermal light. Applied Physics Letters, 89, 061106(2006).

    [26] J Cheng, S S Han, Y J Yan. Resolution and noise in ghost imaging with classical thermal light. Chinese Physics, 15, 2002-2006(2006).

    [27] M H Zhang, Q Wei, X Shen, et al. Lensless Fourier-transform ghost imaging with classical incoherent light. Physical Review A, 75, 021803(2007).

    [28] H L Liu, J Cheng, S S Han. Cross spectral purity and its influence on ghost imaging experiments. Optics Communications, 273, 50-53(2007).

    [29] L H Ou, L M Kuang. Ghost imaging with third-order correlated thermal light. Journal of Physics B, 40, 1833-1844(2007).

    [30] S Crosby, S Castelletto, C Aruldoss, et al. Modelling of classical ghost images obtained using scattered light. New Journal of Physics, 9, 285(2007).

    [31] H L Liu, X Shen, D M Zhu, et al. Fourier-transform ghost imaging with pure far-field correlated thermal light. Physical Review A, 76, 053808(2007).

    [32] H L Liu, J Cheng, S S Han. Ghost imaging in Fourier space. Journal of Applied Physics, 102, 103102(2007).

    [33] B I Erkmen, J H Shapiro. Unified theory of ghost imaging with Gaussian-State light. Physical Review A, 77, 043809(2008).

    [34] R Meyers, Deacon, S K, Y H Shih. Ghost-imaging experiment by measuring reflected photons. Physical Review A, 77, 041801(2008).

    [35] H L Liu, S S Han. Spatial longitudinal coherence length of a thermal source and its influence on lensless ghost imaging. Optics Letters, 33, 824-826(2008).

    [36] F Ferri, D Magatti, V G Sala, et al. Longitudinal coherence in thermal ghost imaging. Applied Physics Letters, 92, 261109(2008).

    [37] Y T Zhang, C J He, H G Li, et al. Novel ghost imaging method for a pure phase object. Chinese Physics Letters, 25, 2481-2484(2008).

    [38] J Cheng. Transfer functions in lensless ghost-imaging systems. Physical Review A, 78, 043823(2008).

    [39] G R Ying, Q W Shen, S S Han. A two-step phase-retrieval method in Fourier-transform ghost imaging. Optics Communications, 281, 5130-5132(2008).

    [40] X Shen, Y F Bai, T Qin, et al. Experimental investigation of quality of lensless ghost imaging with pseudo-thermal light. Chinese Physics Letters, 25, 3968-3971(2008).

    [41] W L Gong, P L Zhang, X Shen, et al. Ghost “pinhole” imaging in Fraunhofer region. Applied Physics Letters, 95, 071110(2009).

    [42] C Q Zhao, W L Gong, M L Chen, et al. Ghost imaging lidar via sparsity constraints. Applied Physics Letters, 101, 141123(2012).

    [43] X F Liu, X R Yao, R M Lan, et al. Edge detection based on gradient ghost imaging. Optics Express, 23, 33802-33811(2015).

    [44] W L Gong, C Q Zhao, H Yu, et al. Three-dimensional ghost imaging lidar via sparsity constraint. Scientific Reports, 6, 26133(2016).

    [45] A M Paniagua-Diaz, I Starshynov, N Fayard, et al. Blind ghost imaging. Optica, 6, 460-464(2019).

    [46] B Q Sun, S Jiang, Y Y Ma, et al. Application and development of single pixel imaging in the special wavebands and 3D imaging. Infrared and Laser Engineering, 49, 0303016(2020).

    [47] F Shi, T X Lu, S N Yang, et al. Target recognition method based on single-pixel imaging system and deep learning in the noisy environment. Infrared and Laser Engineering, 49, 20200010(2020).

    [48] W L Gong. Sub-Nyquist ghost imaging by optimizing point spread function. Optics Express, 29, 17591-17601(2020).

    [49] X W Huang, S Q Nan, W Tan, et al. Ghost imaging influenced by a supersonic wind-induced random environment. Optics Letters, 46, 1009-1012(2021).

    [50] Y F Bai, S S Han. Ghost imaging with thermal light by third-order correlation. Physical Review A, 76, 043828(2007).

    [51] D Z Cao, J Xiong, S H Zhang, et al. Enhancing visibility and resolution in Nth-order intensity correlation of thermal light. Applied Physics Letters, 92, 201102(2008).

    [52] K Kuplicki, K W C Chan. High-order ghost imaging using non-Rayleigh speckle sources. Optics Express, 24, 26766-26776(2016).

    [53] O Katz, Y Bromberg, Y Silberberg. Compressive ghost imaging. Applied Physics Letters, 95, 131110(2009).

    [54] H Y Huang, C Zhou, T Tian, et al. High-quality compressive ghost imaging. Optics Communications, 412, 60-65(2018).

    [55] X H Shi, X W Huang, S Q Nan, et al. Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method. Laser Physics Letters, 15, 045204(2018).

    [56] Z D Zhao, Z H Yang, G L Li. Sub-Nyquist single-pixel imaging by optimizing sampling basis. Optics and Precision Engineering, 29, 1008-1013(2021).

    [57] J H Shapiro. Computational ghost imaging. Physical Review A, 78, 061802(2008).

    [58] P Clemente, Duran, V, V Torres-Company, et al. Optical encryption based on computational ghost imaging. Optics Letters, 35, 2391-2393(2010).

    [59] F Shi, D Q Yu, Z T Lin, et al. Depth estimation in computational ghost imaging system using autofocusing method with adaptive focus window. Infrared and Laser Engineering, 49, 0303020(2020).

    [60] F Ferri, D Magatti, L A Lugiato, et al. Differential ghost imaging. Physical Review Letters, 104, 253603(2010).

    [61] M F Li, Y R Zhang, K H Luo, et al. Time correspondence differential ghost imaging. Physical Review A, 87, 033813(2013).

    [62] B Q Sun, S S Welsh, M P Edgar, et al. Normalized ghost imaging. Optics Express, 20, 16892-16901(2012).

    [63] S Sun, W T Liu, J H Gu, et al. Ghost imaging normalized by second-order coherence. Optics Letters, 44, 5993-5996(2019).

    [64] C Zhang, S X Guo, J S Cao, et al. Object reconstitution using pseudo-inverse for ghost imaging. Optics Express, 22, 30063-30073(2014).

    [65] W L Gong. High-resolution pseudo-inverse ghost imaging. Photonic Research, 3, 234-237(2017).

    [66] Y K Xu, W T Liu, E F Zhang, et al. Is ghost imaging intrinsically more powerful against scattering?. Optics Express, 23, 32993-33000(2015).

    [67] C J Deng, W L Gong, S S Han. Pulse-compression ghost imaging lidar via coherent detection. Optics Express, 24, 25983-25994(2016).

    [68] Z W Wu, X D Qiu, L X Chen. Current status and prospect for correlated imaging technique. Laser & Optoelectronics Progress, 57, 060001(2020).

    [69] Y B Wu, Z H Yang, Z L Tang. Experiment study on anti-disturbance ability of underwater ghost imaging. Laser & Optoelectronics Progress, 58, 0611002(2021).

    [70] W T Liu, S Sun, H K Hu, et al. Progress and prospect for ghost imaging of moving objects. Laser & Optoelectronics Progress, 58, 1011001(2021).

    [71] X Zeng, Y F Bai, X H Shi, et al. The influence of the positive and negative defocusing on lensless ghost imaging. Optics Communications, 382, 415-420(2017).

    [72] C F Wang, D W Zhang, Y F Bai, et al. Ghost imaging for a reflected object with a rough surface. Physical Review A, 82, 063814(2010).

    [73] S Q Nan, Y F Bai, X H Shi, et al. Experimental investigation of ghost imaging of reflective objects with different surface roughness. Photonic Research, 5, 372-376(2017).

    [74] W L Gong, S S Han. Correlated imaging in scattering media. Optics Letters, 36, 394-396(2011).

    [75] Zhang Y Z. Experimental study of crelated imaging algithm design [D]. Shanghai: Shanghai Jiao Tong University, 2014: 34–40. (in Chinese)

    [76] Q Fu, Y F Bai, X W Huang, et al. Positive influence of the scattering medium on reflective ghost imaging. Photonic Research, 7, 1468-1472(2019).

    [77] J H Li, D Y Yang, B Luo, et al. Image quality recovery in binary ghost imaging by adding random noise. Optics Letters, 42, 1640-1643(2017).

    [78] J Cheng. Ghost imaging through turbulent atmosphere. Optics Express, 17, 7916-7921(2009).

    [79] N D Hardy, J H Shapiro. Reflective ghost imaging through turbulence. Physical Review A, 84, 063824(2011).

    [80] C L Luo, P Lei, Z L Li, et al. Long-distance ghost imaging with an almost non-diffracting Lorentz source in atmospheric turbulence. Laser Physics Letters, 15, 085201(2018).

    [81] W Tan, X W Huang, S Q Nan, et al. Effect of the collection range of a bucket detector on ghost imaging through turbulent atmosphere. Journal of the Optical Society of America A, 36, 1261-1266(2019).

    [82] Y X Zhang, Y G Wang. Computational lensless ghost imaging in a slant path non-Kolmogorov turbulent atmosphere. Optik, 123, 1360-1363(2012).

    [83] X Wang, Y X Zhang. Lens ghost imaging in a non-Kolmogorov slant turbulence atmosphere. Optik, 124, 4378-4382(2013).

    [84] W Tan, X W Huang, S Q Nan, et al. Ghost imaging through inhomogeneous turbulent atmosphere along an uplink path and a downlink path. OSA Continuum, 3, 1222-1231(2020).

    [85] K W C Chan, M N O’Sullivan, R W Boyd. Optimization of thermal ghost imaging: High-order correlations vs. background subtraction. Optics Express, 18, 5562-5573(2010).

    [86] X H Shi, H X Li, Y F Bai, et al. Negative influence of detector noise on ghost imaging based on the photon counting technique at low light levels. Applied Optics, 56, 7320-7326(2017).

    [87] P Y Xie, X H Shi, X W Huang, et al. Binary detection in ghost imaging with preserved grayscale. European Physical Journal D, 73, 102(2019).

    [88] L C Andrews, R L Phillips, C Y Hopen, et al. Theory of optical scintillation. Journal of the Optical Society of America A, 16, 1417-1429(1999).

    [89] rews L C, Phillips R L. Laser Beam Propagation Through Rom Media[M]. 2nd Edition. Bellingham: SPIE, 2005.

    CLP Journals

    [1] Hexiang He, Yongyao Li, Sing Wong Kam. Bifunctional scattering light modulation method based on phase conjugation for scattering imaging and optical illusion (invited)[J]. Infrared and Laser Engineering, 2022, 51(8): 20220266

    Wei Tan, Xianwei Huang, Teng Jiang, Qin Fu, Suqin Nan, Xuanpengfan Zou, Yanfeng Bai, Xiquan Fu. Research on the effect of noise-containing signal light on correlated imaging in complex environment (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210657
    Download Citation