• Chinese Journal of Lasers
  • Vol. 45, Issue 10, 1002001 (2018)
Wang Liang1、2, Hu Yong1、2, Lin Yinghua1、2, Li Juehui1、2, and Yao Jianhua1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/cjl201845.1002001 Cite this Article Set citation alerts
    Wang Liang, Hu Yong, Lin Yinghua, Li Juehui, Yao Jianhua. Distribution Gradient Control of Laser Melt Injection Reinforcement Particles by Electromagnetic Compound Field[J]. Chinese Journal of Lasers, 2018, 45(10): 1002001 Copy Citation Text show less
    Schematic of laser melt injection in collaboration with electromagnetic compound field
    Fig. 1. Schematic of laser melt injection in collaboration with electromagnetic compound field
    Morphology of spherical WC particles
    Fig. 2. Morphology of spherical WC particles
    Flow field distribution in molten pool under action of electromagnetic compound field (t=3.9 s). (a) B=0 T;(b) B=0.9 T; (c) B=0.9 T, upward Lorenz force; (d) B=0.9 T, downward Lorenz force
    Fig. 3. Flow field distribution in molten pool under action of electromagnetic compound field (t=3.9 s). (a) B=0 T;(b) B=0.9 T; (c) B=0.9 T, upward Lorenz force; (d) B=0.9 T, downward Lorenz force
    Influence of induced Lorentz force on surface fluid speed in molten pool (t=3.9 s)
    Fig. 4. Influence of induced Lorentz force on surface fluid speed in molten pool (t=3.9 s)
    Influence of directional Lorentz force on surface fluid speed in molten pool (t=3.9 s)
    Fig. 5. Influence of directional Lorentz force on surface fluid speed in molten pool (t=3.9 s)
    Temperature field distribution in molten pool under action of electromagnetic compound field (t=3.9 s). (a) B=0 T; (b) B=0.9 T; (c) B=0.9 T, upward Lorenz force; (d) B=0.9 T, downward Lorenz force
    Fig. 6. Temperature field distribution in molten pool under action of electromagnetic compound field (t=3.9 s). (a) B=0 T; (b) B=0.9 T; (c) B=0.9 T, upward Lorenz force; (d) B=0.9 T, downward Lorenz force
    Particle distribution in melt injection layer under action of electromagnetic compound field. (a) B=0 T; (b) B=0.9 T, upward Lorenz force; (c) B=0.9 T, downward Lorenz force
    Fig. 7. Particle distribution in melt injection layer under action of electromagnetic compound field. (a) B=0 T; (b) B=0.9 T, upward Lorenz force; (c) B=0.9 T, downward Lorenz force
    Experimental results of particle distributions in longitudinal section of melt injection layer under action of electromagnetic compound field. (a) With upward Lorenz force; (b) with downward Lorenz force; (c) without Lorenz force
    Fig. 8. Experimental results of particle distributions in longitudinal section of melt injection layer under action of electromagnetic compound field. (a) With upward Lorenz force; (b) with downward Lorenz force; (c) without Lorenz force
    WC particle morphologies under action of electromagnetic compound field. (a) Without Lorenz force; (b) with downward Lorenz force; (c) with upward Lorenz force
    Fig. 9. WC particle morphologies under action of electromagnetic compound field. (a) Without Lorenz force; (b) with downward Lorenz force; (c) with upward Lorenz force
    Schematic of forces acting on particles and fluid under action of electromagnetic compound field
    Fig. 10. Schematic of forces acting on particles and fluid under action of electromagnetic compound field
    CompositionCCrNiMnSiMoPSFe
    Value0.0216.510.01.550.552.08<0.03<0.03Bal.
    Table 1. Chemical compositions of 316L substrate material used in experiment (mass fraction, %)
    PropertyValue
    Melting temperature /K1700
    Mass density /(kg·m-3)7850
    Dynamic viscosity /(Pa·s)0.006
    Surface tension coefficient /(10-4 N·m-1K-1)-0.52
    Thermal expansion coefficient /(10-5 K-1)5
    Heat convection coefficient /(W·m-2K-1)20
    Particle density /( kg·m-3)15600
    Particle diameter /μm80
    Table 2. Physical parameters of materials
    Wang Liang, Hu Yong, Lin Yinghua, Li Juehui, Yao Jianhua. Distribution Gradient Control of Laser Melt Injection Reinforcement Particles by Electromagnetic Compound Field[J]. Chinese Journal of Lasers, 2018, 45(10): 1002001
    Download Citation