• Chinese Journal of Lasers
  • Vol. 45, Issue 10, 1002001 (2018)
Wang Liang1、2, Hu Yong1、2, Lin Yinghua1、2, Li Juehui1、2, and Yao Jianhua1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/cjl201845.1002001 Cite this Article Set citation alerts
    Wang Liang, Hu Yong, Lin Yinghua, Li Juehui, Yao Jianhua. Distribution Gradient Control of Laser Melt Injection Reinforcement Particles by Electromagnetic Compound Field[J]. Chinese Journal of Lasers, 2018, 45(10): 1002001 Copy Citation Text show less

    Abstract

    The multi-physics simulation of laser melt injection process is conducted and the effects of electromagnetic compound field parameters on the distributions of the flow field, temperature field and particles within the molten pools are investigated, which is also verified by the experiment. The results indicate that, the addition of the electromagnetic compound field can suppress the fluid speed, but does not obviously influence the temperature field distribution. When the directional Lorentz force and the gravity force are in the same direction, the majority of reinforcement particles is trapped in the upper region of the laser melt injection layer, conversely, the majority is in the bottom region.
    Wang Liang, Hu Yong, Lin Yinghua, Li Juehui, Yao Jianhua. Distribution Gradient Control of Laser Melt Injection Reinforcement Particles by Electromagnetic Compound Field[J]. Chinese Journal of Lasers, 2018, 45(10): 1002001
    Download Citation