[1] et alAAR-LN-DQ: Automatic anatomy recognition based disease quantification in thoracic lymph node zones via FDG PET/CT images without nodal delineation. Med. Phys., 47, 3467-3484(2020).
[2] Fully convolutional networks for semantic segmentation. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 3431-3440(2015).
[3] U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015, 234-241(2015).
[4] et alDeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell., 40, 834-848(2018).
[5] et alComparing algorithms for automated vessel segmentation in computed tomography scans of the lung: The VESSEL12 study. Med. Image Anal., 18, 1217-1232(2014).
[6] et alLearning directional feature maps for cardiac MRI segmentation. Medical Image Computing and Computer Assisted Intervention — MICCAI 2020, 108-117(2020).
[7] et alDiSegNet: A deep dilated convolutional encoder-decoder architecture for lymph node segmentation on PET/CT images. Comput. Med. Imag. Graph., 88, 101851(2021).
[8] J. Chen, Y. Lu, Q. Yu et al., Transunet: Transformers make strong encoders for medical image segmentation. arXiv:2102.04306 (2021).
[9] et alPyramid scene parsing network. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2881-2890(2017).
[10] O. Oktay, J. Schlemper, L. L. Folgoc et al., Attention u-net: Learning where to look for the pancreas. arXiv:1804.03999 (2018).
[11] et alAttention is all you need. Adv. Neural Inf. Process. Syst.(2017).
[12] J. Devlin, M.-W. Chang, K. Lee et al., “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv:1810.04805 (2018).
[13] A. Dosovitskiy, L. Beyer, A. Kolesnikov et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv:2010.11929 (2020).
[14] et alRethinking semantic segmentation from a sequence-to-sequence perspective with transformers. Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, 6881-6890(2021).
[15] et alSwin transformer: Hierarchical vision transformer using shifted windows. Proc. IEEE/CVF Int. Conf. Computer Vision, 10012-10022(2021).
[16] H. Cao, Y. Wang, J. Chen et al., “Swin-unet: Unet-like pure transformer for medical image segmentation,” arXiv:2105.05537 (2021).
[17] A. Lin, B. Chen, J. Xu et al., “DS-TransUNet: Dual swin transformer U-Net for medical image segmentation,” arXiv:2106.06716 (2021).
[18] Transfuse: Fusing transformers and cnns for medical image segmentation. Int. Conf. Medical Image Computing and Computer-Assisted Intervention, 14-24(2021).
[19] L. Yuan, Q. Hou, Z. Jiang et al., “Volo: Vision outlooker for visual recognition,” arXiv:2106.13112 (2021).
[20] et alUnetr: Transformers for 3d medical image segmentation. Proc. IEEE/CVF Winter Conf. Applications of Computer Vision, 574-584(2022).
[21] SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 39, 2481-2495(2017).
[22] F. N. Iandola, S. Han, M. W. Moskewicz et al., “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size,” arXiv:1602. 07360 (2016).
[23] A. G. Howard, M. Zhu, B. Chen et al., “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv:1704.04861 (2017).
[24] et alShufflenet: An extremely efficient convolutional neural network for mobile devices. Proc. IEEE Conf. Computer Vision Pattern Recognit, 6848-6856(2018).
[25] A. Paszke, A. Chaurasia, S. Kim et al., “Enet: A deep neural network architecture for real-time semantic segmentation,” arXiv:1606.02147 (2016).
[26] et alLednet: A lightweight encoder–decoder network for real-time semantic segmentation. 2019 IEEE Int. Conf. Image Processing (ICIP), 1860-1864(2019).
[27] et alERFNet: Efficient residual factorized ConvNet for real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst., 19, 263-272(2018).
[28] et alBisenet: Bilateral segmentation network for real-time semantic segmentation. Proc. Eur. Conf. Computer Vision (ECCV), 325-341(2018).
[29] et alBisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation. Int. J. Comput Vis., 129, 3051-3068(2021).
[30] R. P. Poudel, S. Liwicki, R. Cipolla, “Fast-scnn: Fast semantic segmentation network,” arXiv:1902.04502 (2019).
[31] R. P. Poudel, U. Bonde, S. Liwicki et al., “Contextnet: Exploring context and detail for semantic segmentation in real-time,” arXiv:1805. 04554 (2018).
[32] G. Li, I. Yun, J. Kim et al., “Dabnet: Depth-wise asymmetric bottleneck for real-time semantic segmentation,” arXiv:1907.11357 (2019).
[33] et alReal-time semantic segmentation with context aggregation network. ISPRS J. Photogramm. Remote Sens., 178, 124-134(2021).
[34] Y. Hong, H. Pan, W. Sun et al., “Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes,” arXiv:2101.06085 (2021).
[35] et alIcnet for real-time semantic segmentation on high-resolution images. Proc. Eur. Conf. Computer Vision (ECCV), 405-420(2018).
[36] et alEncoder–decoder with atrous separable convolution for semantic image segmentation. Proc. Eur. Conf. Computer Vision (ECCV), 801-818(2018).
[37] et alDenseaspp for semantic segmentation in street scenes. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 3684-3692(2018).
[38] et alRethinking skip connection with layer normalization. Proc. 28th Int. Conf. Computational Linguistics, 3586-3598(2020).
[39] et alSpatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell., 37, 1904-1916(2015).
[40] et alFeature pyramid networks for object detection. Proce. IEEE Conf. Computer Vision and Pattern Recognition., 2117-2125(2021).
[41] et alMobilenetv2: Inverted residuals and linear bottlenecks. Proc. IEEE Conf. Computer Vision and Pattern Recognition., 4510-4520(2018).
[42] et alMicro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science, 330, 1404-1408(2010).
[43] G. Xu, X. Wu, X. Zhang et al., “Levit-unet: Make faster encoders with transformer for medical image segmentation,” arXiv:2107.08623 (2021).