• Laser & Optoelectronics Progress
  • Vol. 54, Issue 8, 82701 (2017)
Li Fangming1、*, Wang Denglong1, She Yanchao2, Ding Jianwen1, and Xiao Siguo1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop54.082701 Cite this Article Set citation alerts
    Li Fangming, Wang Denglong, She Yanchao, Ding Jianwen, Xiao Siguo. Controlling Optical Storage in Semiconductor Quantum Dot Electromagnetically Induced Transparency by Phonon-Assisted Transition[J]. Laser & Optoelectronics Progress, 2017, 54(8): 82701 Copy Citation Text show less
    References

    [1] Hau L V, Harris S E, Dutton Z, et al. Light speed reduction to 17 metres per second in an ultrcold atomic gas[J]. Nature, 1999, 397(6720): 594-598.

    [2] Luo B, Hang C, Li H J, et al. Ultraslow optical solitons via electromagnetically induced transparency: a density-matrix approach[J]. Chin Phys B, 2010, 19(5): 054214.

    [3] Du Yingjie, Yang Zhanying, Xie Xiaotao, et al. Influence of higher nonlinearity to optical solitons in electromagnetically induced transparency medium[J]. Acta Optica Sinica, 2015, 35(2): 0227002.

    [4] Fleischhauer M, Lukin M D. Dark-state polaritons in electromagnetically induced transparency[J]. Physical Review Letters, 2000, 84(22): 5094-5097.

    [5] Liu C, Dutton Z, Behroozi C H, et al. Observation of coherent optical information storage in an atomic medium using halted light pulse[J]. Nature, 2001, 409(6819): 490-493.

    [6] Phillips D F, Fleischhauer A, Mair A, et al. Storage of light in atomic vapor[J]. Physical Review Letters, 2001, 86(5): 783-786.

    [7] Li L M, Peng X, Liu C, et al. The deceleration and storage of a light pulse in caesium vapour[J]. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7(2): 39-42.

    [8] Longdell J J, Fraval E, Sellars M J, et al. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid[J]. Physical Review Letters, 2005, 95(6): 063601.

    [9] Ginsberg N S, Garner S R, Hau L V. Coherent control of optical information with matter wave dynamics[J]. Nature, 2007, 445(7128): 623-626.

    [10] Chen Y, Bai Z Y, Huang G X. Ultraslow optical solitons and their storage and retrieval in an ultracold ladder-type atomic system[J]. Physical Review A, 2014, 89(2): 023835.

    [11] She Y C, Zheng X J, Wang D L, et al. Controllable double tunneling transparency and solitons formation in a quantum dot molecule[J]. Optics Express, 2013, 21(14): 17392-17403.

    [12] Zeng Kuanhong, Wang Denglong, She Yanchao, et al. Spatial optical soliton pairs in a quantum dot with exciton-biexciton coherence[J]. Acta Physica Sinica, 2013, 62(14): 147801.

    [13] Ding C L, Hao X Y, Li J H, et al. Efficient generation of maximally entangled states via four-wave mixing in a semiconductor quantum-dot nanostructure[J]. Physics Letters A, 2010, 374(4): 680-686.

    [14] Wang Z P, Zhen S L, Wu X Q, et al. Controllable optical bistability via tunneling induced transparency in quantum dot molecules[J]. Optics Communications, 2013, 304(1): 7-10.

    [15] Hao X Y, Wu J, Wang Y. Steady-state absorption-dispersion properties and four-wave mixing process in a quantum dot nanostructure[J]. Journal of the Optical Society of America B, 2012, 29(3): 420-428.

    [16] Shan G C, Yin Z Q, Shek C H, et al. Single photon sources with single semiconductor quantum dots[J]. Frontiers of Physics, 2014, 9(2): 170-193.

    [17] Zeng K H, Wang D L, She Y C, et al. The formation and transformation of the spatial weak-light bright and dark solitons in a quantum dot molecule with the interdot tunneling coupling[J]. European Physical Journal D-Atoms, Molecules, Optical & Plasma Physics, 2013, 67(11): 221.

    [18] Li J, Liu J B, Yang X X. Superluminal optical soliton via resonant tunneling in coupled quantum dots[J]. Physica E: Low-dimensional Systems and Nanostructures, 2008, 40(9): 2916-2920.

    [19] Yang W X, Chen A X, Lee R K, et al. Matched slow optical soliton pairs via biexciton coherence in quantum dots[J]. Physical Review A, 2011, 84(1): 013835.

    [20] Li J H, Yu R, Huang P, et al. Spatial weak infrared-light bright and dark solitons in semiconductor quantum-dot nanostructures[J]. Physics Letters A, 2009, 373(5): 554-557.

    [21] Luo Tingting, Wang Denglong, She Yanchao, et al. Collision characteristics of two coupled temporal vector optical solitons in quantum dot[J]. Acta Optica Sinica, 2016, 36(2): 0227001.

    [22] Hao X Y, Zheng A S, Wang Y, et al. Enhanced cross-phase modulation via phase control in a quantum dot nanostructure[J]. Communications in Theoretical Physics, 2012, 57(5): 866-872.

    [23] Qi Y H, Zhou F X, Yang J, et al. Controllable twin laser pulse propagation and dual-optical switching in a four-level quantum dot nanostructure[J]. Journal of the Optical Society of America B, 2013, 30(7): 1928-1936.

    [24] Kuehn W, Reimann K, Woerner M, et al. Strong correlation of electronic and lattice excitations in GaAs/AlGaAs semiconductor quantum wells revealed by two-dimensional terahertz spectroscopy[J]. Physical Review Letters, 2011, 107(6): 067401.

    [25] Luo X Q, Wang D L, Zhang Z Q, et al. Nonlinear optical behavior of a four-level quantum well with coupled relaxation of optical and longitudinal phonons[J]. Physical Review A, 2011, 84(3): 033803.

    [26] Heitz R, Mukhametzhanov I, Stier O, et al. Enhanced polar exciton-LO-phonon interaction in quantum dots[J]. Physical Review Letters, 1999, 83(22): 4654-4657.

    [27] Devreese J T, Fomin V M, Gladilin V N, et al. Enhanced probabilities of phonon-assisted optical transitions in semiconductor quantum dots[J]. Nanotechnology, 2001, 13(2): 163-168.

    [28] She Y C, Luo T T, Zhang W X, et al. Steady-state linear optical properties and Kerr nonlinear optical response of a four-level quantum dot with phonon-assisted transition[J]. Chinese Physics B, 2016, 25(1): 014202.

    [29] Gammon D, Snow E S, Shanabrook V, et al. Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot[J]. Science, 1996, 273(5271): 87-90.

    [30] Brunner K, Abstreiter G, Bhm G, et al. Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure[J]. Physical Review Letters, 1994, 73(8): 1138-1141.

    [31] Hang C, Huang G X. Ultraslow optical solitons in a four-level tripod atomic system[J]. Physics Letters A, 2008, 372(17): 3129-3135.

    [32] Huang G X, Deng L, Payne M G. Dynamics of ultraslow optical solitons in a cold three-state atomic system[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2005, 72(1): 016617.

    [33] Borri P, Langbein W, Schneider S, et al. Ultralong dephasing time in InGaAs quantum dots[J]. Physical Review Letters, 2001, 87(15): 157401.

    [34] Borri P, Langbein W, Woggon U, et al. Exciton dephasing in quantum dot molecules[J]. Physical Review Letters, 2003, 91(26): 267401.

    [35] Larqué M, Robert-Philip I, Beveratos A. Bell inequalities and density matrix for polarization-entangled photons out of a two-photon cascade in a single quantum dot[J]. Physical Review A, 2008, 77(4): 042118.

    CLP Journals

    [1] Hu Jinfeng, Liu Juan, Liu Bin, Chen Jia, Liang Hongqin, Liao Yuncheng, Cai Xuhui. Plasmon-Induced Absorption Based on Double-Stub Resonator and Its Application for Multi-Switching[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102401

    Li Fangming, Wang Denglong, She Yanchao, Ding Jianwen, Xiao Siguo. Controlling Optical Storage in Semiconductor Quantum Dot Electromagnetically Induced Transparency by Phonon-Assisted Transition[J]. Laser & Optoelectronics Progress, 2017, 54(8): 82701
    Download Citation