• Frontiers of Optoelectronics
  • Vol. 5, Issue 1, 51 (2012)
Xue FENG, Fang LIU, and Yidong HUANG*
Author Affiliations
  • State Key Laboratory of Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.1007/s12200-012-0185-x Cite this Article
    Xue FENG, Fang LIU, Yidong HUANG. Spontaneous emission rate enhancement of nano-structured silicon by surface plasmon polariton[J]. Frontiers of Optoelectronics, 2012, 5(1): 51 Copy Citation Text show less
    References

    [1] Daldosso N, Pavesi L. Nanosilicon photonics. Laser & Photonics Reviews, 2009, 3(6): 508-534

    [2] Canham L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters, 1990, 57(10): 1046-1048

    [3] Qin G G, Li Y J. Photoluminescence mechanism model for oxidized porous silicon and nanoscale-silicon-particle-embedded silicon oxide. Physical Review B: Condensed Matter and Materials Physics, 2003, 68(8): 085309

    [4] Franzò G, Priolo F, Coffa S, Polman A, Carnera A. Room temperature electroluminescence from Er-doped crystalline silicon. Applied Physics Letters, 1994, 64(17): 2235-2237

    [5] Rong H S, Liu A, Jones R, Cohen O, Hak D, Nicolaescu R, Fang A, Paniccia M. An all-silicon Raman laser. Nature, 2005, 433(7023): 292-294

    [6] Kovalev D, Heckler H, Ben-Chorin M, Polisski G, Schwartzkopff M, Koch F. Breakdown of the k-conservation rule in Si nanocrystals. Physical Review Letters, 1998, 81(13): 2803-2806

    [7] Godefroo S, Hayne M, Jivanescu M, Stesmans A, Zacharias M, Lebedev O I, Van Tendeloo G, Moshchalkov V V. Classification and control of the origin of photoluminescence from Si nanocrystals. Nature Nanotechnology, 2008, 3(3): 174-178

    [8] Bianucci P, Rodríguez J R, Clements C M, Veinot J G C, Meldrum A. Silicon nanocrystal luminescence coupled to whispering gallery modes in optical fibers. Journal of Applied Physics, 2009, 105(2): 023108

    [9] Wilson W L, Szajowski P F, Brus L E. Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science, 1993, 262(5137): 1242-1244

    [10] Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F. Optical gain in silicon nanocrystals. Nature, 2000, 408(6811): 440-444

    [11] Gontijo I, Boroditsky M, Yablonovitch E, Keller S, Mishra U, DenBaars S. Coupling of InGaN quantum-well photoluminescence to silver surface plasmons. Physical Review B: Condensed Matter and Materials Physics, 1999, 60(16): 11564-11567

    [12] Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Materials, 2004, 3(9): 601-605

    [13] Sun G, Khurgin J B, Soref R A. Practicable enhancement of spontaneous emission using surface plasmons. Applied Physics Letters, 2007, 90(11): 111107

    [14] Khurgin J B, Sun G, Soref R A. Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit. Journal of the Optical Society of America B, Optical Physics, 2007, 24(8): 1968-1980

    [15] Lai C W, Au J, Ong H C. Surface-plasmon-mediated emission from metal-capped ZnO thin film. Applied Physics Letters, 2005, 86(25): 251105

    [16] Purcell E M. Spontaneous emission probabilities at radio frequencies. Physical Review, 1946, 69(1946): 681

    [17] Hu X L, Huang Y D, Zhang W, Peng J D. Dominating radiative recombination in a nanoporous silicon layer with a metal-rich Au(1 - α)-SiO2(α) cermet waveguide. Applied Physics Letters, 2006, 89(8): 081112

    [18] Tang X, Wang Y X, Ke W W, Feng X, Huang Y D, Peng J D. Internal quantum efficiency enhancement of silicon nanocrystals using doublelayer Au-rich cermet films. Optics Communications, 2010, 283(13): 2754-2757

    [19] Tang X, Huang Y D, Wang Y, Zhang W, Peng J. Tunable surface plasmons for emission enhancement of silicon nanocrystals using Ag-poor cermet layer. Applied Physics Letters, 2008, 92(25): 251116

    [20] Feng X, Liu F, Huang Y D. Calculated plasmonic enhancement of spontaneous emission from silicon nanocrystals with metallic gratings. Optics Communications, 2010, 283(13): 2758-2761

    [21] Feng X, Liu F, Huang Y D. Spontaneous emission rate enhancement of silicon nanocrystals by plasmonic band gap on copper grating. Journal of Lightwave Technology, 2010, 28(9): 1420-1430

    [22] Zayatsa A V, Smolyaninovb I I, Maradudinc A A. Nano-optics of surface plasmon polaritons. Physics Reports, 2005, 408(3-4): 131-314

    [23] Spanier J E, Herman I P. Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films. Physical Review B: Condensed Matter, 2000, 61(15): 10437-10450

    [24] BarnesWL, Kitson S C, Preist TW, Sambles J R. Photonic surfaces for surface-plasmon Polaritons. Journal of the Optical Society of America A, 1997, 14(7): 1654-1661

    [25] Chandezon J, Dupuis M T, Cornet G, Maystre D. Multicoated gratings: a differential formalism application in the entire optical region. Journal of the Optical Society of America, 1982, 72(7): 839-846

    [26] Feng X, Ke W W, Tang X, Huang Y D, Zhang W, Peng J D. Numerical solution of surface plasmon polariton mode propagating on spatially periodic metal-dielectric interface. Journal of the Optical Society of America B, 2009, 26(12): B11-B20

    [27] BarnesWL, Preist TW, Kitson S C, Sambles J R. Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Physical Review B: Condensed Matter and Materials Physics, 1996, 54(9): 6227-6244

    Xue FENG, Fang LIU, Yidong HUANG. Spontaneous emission rate enhancement of nano-structured silicon by surface plasmon polariton[J]. Frontiers of Optoelectronics, 2012, 5(1): 51
    Download Citation