• Chinese Journal of Lasers
  • Vol. 49, Issue 8, 0802008 (2022)
Yifei Wang1, Zhou Yu2, Kangmei Li1、3、4, and Jun Hu2、*
Author Affiliations
  • 1College of Mechanical Engineering, Donghua University, Shanghai 201620, China
  • 2Institute of Artificial Intelligence, Donghua University, Shanghai 201620, China
  • 3Shanghai Collaborative Innovation Center for High Performance Fiber composites, Donghua University, Shanghai 201620, China
  • 4State Key Laboratory of Digital Manufacturing Equipment & Technology, Wuhan 430074, Hubei, China
  • show less
    DOI: 10.3788/CJL202249.0802008 Cite this Article Set citation alerts
    Yifei Wang, Zhou Yu, Kangmei Li, Jun Hu. Numerical Simulation of Micro-pit Morphology of Titanium Alloy Ablated by Nanosecond Laser[J]. Chinese Journal of Lasers, 2022, 49(8): 0802008 Copy Citation Text show less
    References

    [1] Nie X, Leyland A, Matthews A et al. Effects of solution pH and electrical parameters on hydroxyapatite coatings deposited by a plasma-assisted electrophoresis technique[J]. Journal of Biomedical Materials Research, 57, 612-618(2001).

    [2] Wang Y F, Yu Z, Guo X R et al. Surface morphology of modified titanium alloy affects proliferation stability of bone marrow mesenchymal stem cells[J]. Surface and Coatings Technology, 366, 156-163(2019).

    [3] Ozdemir Z, Ozdemir A, Basim G B. Application of chemical mechanical polishing process on titanium based implants[J]. Materials Science and Engineering: C, 68, 383-396(2016).

    [4] Cunha A, Renz R P, Blando E et al. Osseointegration of atmospheric plasma-sprayed titanium implants: influence of the native oxide layer[J]. Journal of Biomedical Materials Research, 102, 30-36(2014).

    [5] van Velzen F J, Ofec R, Schulten E A et al. 10-year survival rate and the incidence of peri-implant disease of 374 titanium dental implants with a SLA surface: a prospective cohort study in 177 fully and partially edentulous patients[J]. Clinical Oral Implants Research, 26, 1121-1128(2015).

    [6] Ming R, Shen J W, Lai M T et al. Characteristics of Femtosecond Laser Microprecision Ablation of 18Cr2Ni4WA Steel Used in Face Gears[J]. Laser & Optoelectronics Progress, 58, 0914001(2021).

    [7] Wang Q H, Wang H X, Wang Z D et al. Highly efficient nanosecond laser-based multifunctional surface fabrication and corrosion resistance performance[J]. Chinese Journal of Lasers, 48, 1402018(2021).

    [8] Yu Z, Zhang W J, Hu J. Micromachining of titanium alloy implant by picosecond laser surface texturing and alloy biocompatibility[J]. Chinese Journal of Lasers, 44, 0102014(2017).

    [9] Luo X, Yao S L, Zhang H J et al. Biocompatible nano-ripples structured surfaces induced by femtosecond laser to rebel bacterial colonization and biofilm formation[J]. Optics & Laser Technology, 124, 105973(2020).

    [10] Purnama A, Furlan V, Dessi D et al. Laser surface texturing of SS316L for enhanced adhesion of HUVECs[J]. Surface Engineering, 36, 1240-1249(2020).

    [11] Brånemark R, Emanuelsson L, Palmquist A et al. Bone response to laser-induced micro- and nano-size titanium surface features[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 7, 220-227(2011).

    [12] Dumas V, Rattner A, Vico L et al. Multiscale grooved titanium processed with femtosecond laser influences mesenchymal stem cell morphology, adhesion, and matrix organization[J]. Journal of Biomedical Materials Research, 100, 3108-3116(2012).

    [13] Xu Y, Liu W, Zhang G Q et al. Friction stability and cellular behaviors on laser textured Ti-6Al-4V alloy implants with bioinspired micro-overlapping structures[J]. Journal of the Mechanical Behavior of Biomedical Materials, 109, 103823(2020).

    [14] Chen J, Ulerich J P, Abelev E et al. An investigation of the initial attachment and orientation of osteoblast-like cells on laser grooved Ti-6Al-4V surfaces[J]. Materials Science and Engineering: C, 29, 1442-1452(2009).

    [15] Heinrich A, Dengler K, Koerner T et al. Laser-modified titanium implants for improved cell adhesion[J]. Lasers in Medical Science, 23, 55-58(2008).

    [16] Kilian K A, Bugarija B, Lahn B T et al. Geometric cues for directing the differentiation of mesenchymal stem cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 4872-4877(2010).

    [17] Wu J, Wei W F, Li X W et al. Infrared nanosecond laser-metal ablation in atmosphere: initial plasma during laser pulse and further expansion[J]. Applied Physics Letters, 102, 164104(2013).

    [18] Tan X Y, Zhang D M, Li Z H et al. Ionization effect to plasma expansion study during nanosecond pulsed laser deposition[J]. Physics Letters A, 370, 64-69(2007).

    [19] Tan X Y, Zhang D M, Yu B M et al. Vaporization effect studying on high-power nanosecond pulsed laser deposition[J]. Physica B: Condensed Matter, 358, 86-92(2005).

    [20] Zhang D M, Tan X Y, Li Z H et al. Thermal regime and effect studying on the ablation process of thin films prepared by nanosecond pulsed laser[J]. Physica B: Condensed Matter, 357, 348-355(2005).

    [21] Zhang Z Y, Nian Q, Doumanidis C C et al. First-principles modeling of laser-matter interaction and plasma dynamics in nanosecond pulsed laser shock processing[J]. Journal of Applied Physics, 123, 054901(2018).

    [22] Li X X, Guan Y C. Theoretical fundamentals of short pulse laser-metal interaction: a review[J]. Nanotechnology and Precision Engineering, 3, 105-125(2020).

    [23] Ren N F, Jiang L L, Liu D et al. Comparison of the simulation and experimental of hole characteristics during nanosecond-pulsed laser drilling of thin titanium sheets[J]. The International Journal of Advanced Manufacturing Technology, 76, 735-743(2015).

    [24] Liu D, Kong D X, Miao Z Q et al. Simulation and experimental investigation on nano-second pulsed laser drilling of titanium alloy[J]. High Power Laser and Particle Beams, 30, 069001(2018).

    [25] Liu H X, Yang S J, Wang X et al. Experiment study and numerical simulation of pulsed laser ablation crater[J]. Chinese Journal of Lasers, 36, 219-223(2009).

    [26] Luo Y, Pang S Y, Zhou J X et al. Numerical simulation of recast layer formation in nanosecond pulse laser drilling on nickel-based high-temperature alloy[J]. Chinese Journal of Lasers, 41, 0403007(2014).

    [27] Zhang J J, Zhao L, Rosenkranz A et al. Nanosecond pulsed laser ablation on stainless steel-combining finite element modeling and experimental work[J]. Advanced Engineering Materials, 21, 1900193(2019).

    [28] Yan Z X, Mei X S, Wang W J et al. Numerical simulation on nanosecond laser ablation of titanium considering plasma shield and evaporation-affected surface thermocapillary convection[J]. Optics Communications, 453, 124384(2019).

    [29] Osher S, Fedkiw R, Piechor K. Level set methods and dynamic implicit surfaces[J]. Applied Mechanics Reviews, 57, B15(2004).

    [30] Yang C C, Lin Y C, Yang C C et al. Laser-induced coloring of titanium alloy using ultraviolet nanosecond pulses scanning technology[J]. Journal of Alloys and Compounds, 715, 349-361(2017).

    [31] Li K, Zhao Z Y, Zhou H M et al. Numerical analyses of molten pool evolution in laser polishing Ti6Al4V[J]. Journal of Manufacturing Processes, 58, 574-584(2020).

    [32] Xue A T, Lin X, Wang L L et al. Heat-affected coarsening of β grain in titanium alloy during laser directed energy deposition[J]. Scripta Materialia, 205, 114180(2021).

    [33] Pariona M M, Taques A F, Woiciechowski L A. The Marangoni effect on microstructure properties and morphology of laser-treated Al-Fe alloy with single track by FEM: varying the laser beam velocity[J]. International Journal of Heat and Mass Transfer, 119, 10-19(2018).

    [34] Williams E, Brousseau E B. Simulation and experimental study of nanosecond laser micromachining of commercially pure titanium[J]. Journal of Micro and Nano-Manufacturing, 4, 011004(2016).

    [35] Lee Y, Nordin M, Babu S S et al. Effect of fluid convection on dendrite arm spacing in laser deposition[J]. Metallurgical and Materials Transactions B, 45, 1520-1529(2014).

    [36] Meng Q B, Zhou X L, Li J H et al. High-throughput laser fabrication of Ti-6Al-4V alloy: part I. Numerical investigation of dynamic behavior in molten Pool[J]. Journal of Manufacturing Processes, 59, 509-522(2020).

    [37] Wang Y F, Zhang M J, Li K M et al. Study on the surface properties and biocompatibility of nanosecond laser patterned titanium alloy[J]. Optics & Laser Technology, 139, 106987(2021).

    [38] Grabowski A, Florian T, Wieczorek J et al. Structuring of the Ti6Al4V alloy surface by pulsed laser remelting[J]. Applied Surface Science, 535, 147618(2021).

    [39] Ulerich J P, Ionescu L C, Chen J B et al. Modifications of Ti-6Al-4V surfaces by direct-write laser machining of linear grooves[J]. Proceedings of SPIE, 6458, 645819(2007).

    Yifei Wang, Zhou Yu, Kangmei Li, Jun Hu. Numerical Simulation of Micro-pit Morphology of Titanium Alloy Ablated by Nanosecond Laser[J]. Chinese Journal of Lasers, 2022, 49(8): 0802008
    Download Citation