• Journal of Innovative Optical Health Sciences
  • Vol. 12, Issue 5, 1940004 (2019)
Sviatlana Kalinina1,*, Alexander Jelzow2, Tobias Pl€otzing3, and Angelika Rück1
Author Affiliations
  • 1University of Ulm, Core Facility Confocal and Multiphoton Microscopy, N24 Albert-Einstein-Allee 11, 89081 Ulm, Germany
  • 2Becker & Hickl GmbH, Nahmitzer Damm 30 12277 Berlin, Germany
  • 3Laser Quantum GmbH, Max-Stromeyer-Str. 116 78467 Konstanz, Germany
  • show less
    DOI: 10.1142/s1793545819400042 Cite this Article
    Sviatlana Kalinina, Alexander Jelzow, Tobias Pl€otzing, Angelika Rück. Fast repetition rate fs pulsed lasers for advanced PLIM microscopy[J]. Journal of Innovative Optical Health Sciences, 2019, 12(5): 1940004 Copy Citation Text show less
    References

    [1] D. E. Dolmans, D. Fukumura, R. K. Jain, “Photodynamic therapy for cancer," Nat. Rev. Cancer 3(5), 380–387 (2003).

    [2] J. D. Knoll, B. A. Albani, C. Turro, “New Ru(II) complexes for dual photoreactivity: Ligand exchange and 1O2 generation," Acc. Chem. Res. 48(8), 2280–2287 (2015).

    [3] N. Ji, J. Magee, E. Betzig, “High-speed, lowphotodamage nonlinear imaging using passive pulse splitters," Nat. Methods 5, 197–202 (2008).

    [4] S. Kalinina, J. Breymayer, K. Reeβ, L. Lilge, A. Mandel, A. Rück, Correlation of intracellular oxygen and cell metabolism by simultaneous PLIM of phosphorescent TLD1433 and FLIM of NAD(P)H, J. Biophotonics 11(10), e201800085 (2018), doi: 10.1002/jbio.201800085.

    [5] P. Kaspler, S. Lazic, S. Forward, Y. Arenas, A. Mandela, L. Lilge, “A ruthenium(II) based photosensitizer and transferrin complexes enhance photophysical properties, cell uptake, and photodynamic therapy safety and e±cacy," Photochem. Photobiol. Sci. 15(4), 481–495 (2016).

    [6] J. C. Kennedy, R. H. Pottier, D. C. Pross, “Photodynamic therapy with endogenous protoporphyrin IX: Basic principles and present clinical experience," J. Photochem. Photobiol. B 6(1–2), 143–148 (1990).

    [7] Z. Huang, Q. Chen, D. Luck, J. Beckers, B. C. Wilson, N. Trncic, S. M. LaRue, D. Blanc, F. W. Hetzel, “Studies of a vascular-acting photosensitizer, Pd-bacteriopheophorbide (Tookad), in normal canine prostate and spontaneous canine prostate cancer," Lasers Surg. Med. 36(5), 390–397 (2005).

    [8] A. Rueck, A. Beohmler, R. Steiner, “PDT with TOOKADr studied in the chorioallantoic membrane of fertilized eggs," Photodiagnosis Photodyn. Ther. 2(1), 79–90 (2005).

    [9] K. L. Molpus, D. Kato, M. R. Hamblin, L. Lilge, M. Bamberg, T. Hasan, “Intraperitoneal photodynamic therapy of human epithelial ovarian carcinomatosis in a xenograft murine model," Cancer Res. 56(5), 1075–1082 (1996).

    [10] J. T. Elliott, K. S. Samkoe, J. R. Gunn, E. E. Stewart, T. B. Gardner, K. M. Tichauer, T.-Y. Lee, P. J. Hoopes, S. P. Pereira, T. Hasan, B. W. Pogue, “Perfusion CT estimates photosensitizer uptake and biodistribution in a rabbit orthotopic pancreatic cancer model: A pilot study," Acad. Radiol. 22(5), 572–579 (2015).

    [11] S. Monro, K. L. Colón, H. Yin, J. Roque, P. Konda, S. Gujar, R. P. Thummel, L. Lilge, C. G. Cameron, S. A. McFarland, “Transition metal complexes and photodynamic therapy from a tumor-centered approach: Challenges, opportunities, and highlights from the development of TLD1433," Chem. Rev. 119(2), 797–828 (2019).

    [12] V. Balzani, F. Bolletta, “Transition metal complexes as mediators in photochemical and chemiluminescence reactions," Comments Inorg. Chem. 2(5), 211–226 (1983).

    [13] R. Trondl, P. Heffeter, C. R. Kowol, M. A. Jakupec, W. Berger, B. K. Keppler, “NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application," Chem. Sci. 5(4), 2925–2932 (2014).

    [14] C. Reichardt, K. R. A. Schneider, T. Sainuddin, M. Wachtler, S. A. McFarland, B. Dietzek, “Excited state dynamics of a photobiologically active Ru(II) dyad are altered in biologically relevant environments," J. Phys. Chem. A. 121(30), 5635–5644 (2017).

    [15] C. Mari, V. Pierroz, S. Ferrarib, G. Gasser, “Combination of Ru(II) complexes and light: New frontiers in cancer therapy," Chem. Sci. 6, 2660–2686 (2015).

    [16] S. Chakrabortty, B. K. Agrawalla, A. Stumper, N. M. Vegi, S. Fischer, C. Reichardt, M. K€ogler, B. Dietzek,M. Feuring-Buske, C. Buske, S. Rau, T.Weil, “Mitochondria targeted protein-ruthenium photosensitizer for e±cient photodynamic applications," J.Am. Chem. Soc. 139(6), 252–259 (2017).

    [17] Y. Zhang, Q. Zhou, N. Tian, C. Li, X. Wang, “Ru(II)-complex-based DNA photocleaver having intense absorption in the phototherapeutic window," Inorg. Chem. 56(4), 1865–1873 (2017).

    [18] T. Wang, N. Zabarska, Y. Wu, M. Lamla, S. Fischer, K. Monczak, D. Y. Ng, S. Rau, T. Weil, “Receptor selective ruthenium-somatostatin photosensitizer for cancer targeted photodynamic applications," Chem. Commun. 51(63), 12552–12555 (2015).

    [19] Z. Z. Li, Y. L. Niu, H. Y. Zhou, H. Y. Chao, H. B. Ye, “Visible-light-induced photooxidation of ruthenium(ii) complex with 2,20-biimidazole-like ligand by singlet oxygen," Inorg. Chem. 52(17), 10087–10095 (2013).

    [20] S. Kalinina, J. Breymayer, P. M. Schafer, E. Calzia, V. Shcheslavskiy, W. Becker, A. Rück, “Correlative NAD(P)H-FLIM and oxygen sensing-PLIM for metabolic mapping," J. Biophotonics 9(8), 800–811 (2016).

    [21] W. Becker, Advanced Time-Correlated Single Photon Counting Applications, Springer Series in Chemical Physics, Vol. 111, Springer-Verlag, Berlin (2015).

    [22] D.-Z. Xu, Q. Lu, R. Kubicka, E. A. Deitch, “The effect of hypoxia/reoxygenation on the cellular function of intestinal epithelial cells," J. Trauma 46(2), 280–285 (1999).

    [23] F. M. Rollwagen, S. Madhavan, A. Singh, Y. Y. Li, K. Wolcott, R. Maheshwari, “IL-6 protects enterocytes from hypoxia-induced apoptosis by induction of bcl-2 mRNA and reduction of fas mRNA," Biochem. Biophys. Res. Commun. 347(4), 1094–1098 (2006).

    [24] Y. Arenas, S. Monro, G. Shi, A. Mandel, S. McFarland, L. Lilge, “Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru(II)-based type I/type II photosensitizers," Photodiagnosis Photodyn. Ther. 10(4), 615–625 (2013).

    [25] S. Kalinina, L. Lilge, A. Mandel, A. Rück, Correlated simultaneous fluorescence and phosphorescence lifetime imaging reveals an association between intracellular oxygen tension and metabolic changes in living cells, Proceeding SPIE Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XVII, Vol. 10881, p. 10811G, (2019), https://doi.org/10.1117/12.2508303.

    [26] S. Kalinina, P. M. Schafer, J. Breymayer, D. Bisinger, S. Chakrabortty, A. Rück, Oxygen sensing PLIM together with FLIM of intrinsic cellular fluorophores for metabolic mapping, Proceeding SPIE Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XVI, Vol. 10497, p. 104970F, (2018), https://doi.org/10.1117/12.2287429.

    [27] A. Cheng, J. T. Goncalves, P. Golshani, K. Arisaka, C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing," Nat. Methods 8, 139–142 (2011).

    [28] J. Fong, K. Kasimova, Y. Arenas, P. Kaspler, S. Lazic, A. Mandel, L. Lilge, “A novel class of ruthenium-based photosensitizers effectively kills in vitro cancer cells and in vivo tumors," Photochem. Photobiol. Sci. 14(11), 2014–2023 (2015).

    Sviatlana Kalinina, Alexander Jelzow, Tobias Pl€otzing, Angelika Rück. Fast repetition rate fs pulsed lasers for advanced PLIM microscopy[J]. Journal of Innovative Optical Health Sciences, 2019, 12(5): 1940004
    Download Citation