• Matter and Radiation at Extremes
  • Vol. 5, Issue 4, 047201 (2020)
Ruoyu Han1,2, Jiawei Wu2,3, Haibin Zhou2,4, Yongmin Zhang2,b)..., Aici Qiu2, Jiaqi Yan2, Weidong Ding2, Chen Li1, Chenyang Zhang1 and Jiting Ouyang1|Show fewer author(s)
Author Affiliations
  • 1School of Physics, Beijing Institute of Technology, Beijing 100081, China
  • 2State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
  • 3Global Energy Interconnection Development and Cooperation Organization, Beijing 100031, China
  • 4Systems Engineering Research Institute, Beijing 100094, China
  • show less
    DOI: 10.1063/1.5135725 Cite this Article
    Ruoyu Han, Jiawei Wu, Haibin Zhou, Yongmin Zhang, Aici Qiu, Jiaqi Yan, Weidong Ding, Chen Li, Chenyang Zhang, Jiting Ouyang. Experiments on the characteristics of underwater electrical wire explosions for reservoir stimulation[J]. Matter and Radiation at Extremes, 2020, 5(4): 047201 Copy Citation Text show less
    References

    [1] V. A. Burtsev, N. V. Kalinin, A. V. Luchinski. Electrical Explosion of Conductors and Its Application in Electro-Physical Installations(1990).

    [2] A. Frank, S. V. Lebedev, D. D. Ryutov. Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities. Rev. Mod. Phys., 91, 025002(2019).

    [3] L. A. Collins, M. P. Desjarlais, J. D. Kress. Electrical conductivity for warm, dense aluminum plasmas and liquids. Phys. Rev. E, 66, 025401(2002).

    [4] Y. A. Kotov. Electric explosion of wires as a method for preparation of nanopowders. J. Nanopart. Res., 5, 539-550(2003).

    [5] A. Qiu, Y. Zhang, H. Zhou et al. Research progress in electrical explosion shockwave technology for developing fossil energy. High Voltage Eng., 42, 1009-1017(2016).

    [6] A. Fedotov, Y. E. Krasik, D. Sheftman et al. Underwater electrical wire explosion. Plasma Sources Sci. Technol., 19, 034020(2010).

    [7] A. Grinenko, Y. E. Krasik, A. Sayapin et al. Underwater electrical wire explosion and its applications. IEEE Trans. Plasma Sci., 36, 423-434(2008).

    [8] S. A. Pikuz, V. M. Romanova, S. I. Tkachenko et al. Maximum energy deposition during resistive stage and overvoltage at current driven nanosecond wire explosion. IEEE Trans. Plasma Sci., 34, 2330-2335(2006).

    [9] A. Grinenko, V. T. Gurovich, A. Saypin et al. Strongly coupled copper plasma generated by underwater electrical wire explosion. Phys. Rev. E, 72, 066401(2005).

    [10] S. Efimov, A. Grinenko, Y. E. Krasik et al. Nanosecond time scale, high power electrical wire explosion in water. Phys. Plasmas, 13, 042701(2006).

    [11] S. N. Bland, Y. E. Krasik, D. Yanuka et al. Generation of highly symmetric, cylindrically convergent shockwaves in water. Phys. Plasmas, 24, 082702(2017).

    [12] A. J. Gillard, S. F. Golovashchenko, A. V. Mamutov. Formability of dual phase steels in electrohydraulic forming. J. Mater. Process. Technol., 213, 1191-1212(2013).

    [13] M. Barcellos, K. Grunert, J. Kügler et al. European consumers’ acceptance of beef processing technologies: A focus group study. Innov. Food Sci. Emerg. Technol., 11, 721-732(2010).

    [14] M. Matallah, O. Maurel, T. Reess et al. Electrohydraulic shock wave generation as a means to increase intrinsic permeability of mortar. Cem. Concr. Res., 40, 1631-1638(2010).

    [15] W. Chen, O. Maurel, T. Reess et al. Experimental study on an alternative oil stimulation technique for tight gas reservoirs based on dynamic shock waves generated by pulsed arc electrohydraulic discharges. J. Petrol. Sci. Eng., 88-89, 67-74(2012).

    [16] V. T. Gurovich, A. Virozub, D. Yanuka et al. Addressing optimal underwater electrical explosion of a wire. Phys. Plasmas, 23, 092708(2016).

    [17] R. Han, J. Wu, H. Zhou et al. Parameter regulation of underwater shock waves based on exploding-wire-ignited energetic materials. J. Appl. Phys., 125, 153302(2019).

    [18] H. Li, Y. Zhang, H. Zhou et al. Generation of electrohydraulic shock waves by plasma-ignited energetic materials: III. Shock wave characteristics with three discharge loads. IEEE Trans. Plasma Sci., 43, 4017-4023(2015).

    [19] R. Han, Q. Liu, H. Zhou et al. Generation of electrohydraulic shock waves by plasma-ignited energetic materials: I. Fundamental mechanisms and processes. IEEE Trans. Plasma Sci., 43, 3999-4008(2015).

    [20] A. Grinenko, V. T. Gurovich, A. Sayapin et al. Underwater electrical explosion of a Cu wire. J. Appl. Phys., 97, 023303(2005).

    [21] S. Efimov, A. Fedotov-Gefen, L. Gilburd et al. Generation of a 400 GPa pressure in water using converging strong shock waves. Phys. Plasmas, 18, 062701(2011).

    [22] L. P. Orlenko, C. Sun. Explosion Physics(2011).

    [23] R. Han, A. Qiu, J. Wu et al. A platform for exploding wires in different media. Rev. Sci. Instrum., 88, 103504(2017).

    [24] R. Han, J. Wu, H. Zhou et al. Characteristics of exploding metal wires in water with three discharge types. J. Appl. Phys., 122, 033302(2017).

    [25] R. Han, Y. Zhang, H. Zhou et al. Signal analysis and waveform reconstruction of shock waves generated by underwater electrical wire explosions with piezoelectric pressure probes. Sensors, 16, 573(2016).

    [26] W. G. Chace, H. K. Moore. Exploding Wires(1959).

    [27] D. V. Barishpoltsev, G. V. Ivanenkov, S. I. Tkachenko et al. Analysis of the discharge channel structure upon nanosecond electrical explosion of wires. Phys. Plasmas, 14, 123502(2007).

    [28] A. R. Mingaleev, V. M. Romanova, S. I. Tkachenko. Distribution of matter in the current-carrying plasma and dense core of the discharge channel formed upon electrical wire explosion. Plasma Phys. Rep., 35, 734-753(2009).

    [29] V. M. Romanova, T. A. Shelkovenko, S. I. Tkachenko et al. Laser imaging of secondary breakdown upon nanosecond electrical explosion of wire. IEEE Trans. Plasma Sci., 36, 1292-1293(2008).

    [30] Y. Fan, H. Shi, G. Yin et al. Multilayer weak shocks generated by restrike during underwater electrical explosion of Cu wires. Appl. Phys. Lett., 115, 084101(2019).

    [31] K.-J. Chung, Y. S. Hwang, K. Lee et al. Numerical model for electrical explosion of copper wires in water. J. Appl. Phys., 120, 203301(2016).

    [32] X. Wang. Research at Tsinghua University on electrical explosions of wires. Matter Radiat. Extremes, 4, 017201(2019).

    [33] S. Efimov, A. Rososhek, S. V. Tewari et al. Phase transitions of copper, aluminum, and tungsten wires during underwater electrical explosions. Phys. Plasmas, 25, 102709(2018).

    [34] G. S. Sarkisov, P. V. Sasorov, K. W. Struve et al. State of the metal core in nanosecond exploding wires and related phenomena. J. Appl. Phys., 96, 1674-1686(2004).

    [35] A. Fedotov, V. T. Gurovich, D. Sheftman et al. Spectroscopic research of underwater electrical wire explosion. Phys. Plasmas, 15, 082704(2008).

    [36] W. G. Chace, M. A. Levine. Classification of wire explosions. J. Appl. Phys., 31, 1298(1960).

    [37] R. L. Doney, J. H. Niederhaus, G. B. Vunni. Experiments and simulations of exploding aluminum wires: Validation of ALEGRA-MHD(2010).

    [38] S. A. Chaikovsky, V. I. Oreshkin, N. A. Ratakhin et al. Water bath effect during the electrical underwater wire explosion. Phys. Plasmas, 14, 102703(2007).

    [39] R. B. Baksht, A. Y. Labetsky, V. I. Oreshkin et al. Study of metal conductivity near the critical point using a microwire electrical explosion in water. Tech. Phys., 49, 843-848(2004).

    [40] A. Rososhek, S. Theocharous, D. Yanuka et al. X-ray radiography of the overheating instability in underwater electrical explosions of wires. Phys. Plasmas, 26, 050703(2019).

    [41] A. Rososhek, S. Theocharous, D. Yanuka et al. Multi frame synchrotron radiography of pulsed power driven underwater single wire explosions. J. Appl. Phys., 124, 153301(2018).

    [42] S. N. Bland, S. P. Theocharous, D. Yanuka et al. Use of synchrotron-based radiography to diagnose pulsed power driven wire explosion experiments. Rev. Sci. Instrum., 90, 013504(2019).

    [43] R. Han, J. Wu, H. Zhou et al. Experimental verification of the vaporization’s contribution to the shock waves generated by underwater electrical wire explosion under microsecond timescale pulsed discharge. Phys. Plasmas, 24, 063511(2017).

    [44] R. Han, J. Wu, H. Zhou et al. Relationship between energy deposition and shock wave phenomenon in an underwater electrical wire explosion. Phys. Plasmas, 24, 093506(2017).

    [45] R. Han, W. Yao, H. Zhou et al. An empirical approach for parameters estimation of underwater electrical wire explosion. Phys. Plasmas, 26, 093502(2019).

    [46] H. Zhou. Study on shock wave generation mechanism and energy conversion characteristics of underwater Cu-wire microsecond explosion(2017).

    [47] G. V. Ivanenkov, A. R. Mingaleev, V. M. Romanova et al. Electric explosion of fine wires: Three groups of materials. Plasma Phys. Rep., 41, 617-636(2015).

    [48] R. Han, A. Qiu, J. Wu et al. Electrical explosions of Al, Ti, Fe, Ni, Cu, Nb, Mo, Ag, Ta, W, W-Re, Pt, and Au wires in water: A comparison study. J. Appl. Phys., 124, 043302(2018).

    [49] Y. E. Krasik, A. Rososhek, D. Yanuka. Comparison of electrical explosions of Cu and Al wires in water and glycerol. Phys. Plasmas, 24, 053512(2017).

    [50] R. D. Ford, W. M. Lee. Pressure measurements correlated with electrical explosion of metals in water. J. Appl. Phys., 64, 3851-3854(1988).

    [51] M. Q. Brewster, M. R. Jones. Radiant emission from the aluminum-water reaction. J. Quant. Spectrosc. Radiat. Transfer, 46, 109-118(1991).

    [52] R. P. Toth, T. J. Tucker. EBW1: A computer code for the prediction of the behavior of electrical circuits containing exploding wire elements(1975).

    [53] S. V. Lebedev, A. I. Savvatimskiĭ. Metals during rapid heating by dense currents. Sov. Phys. Usp., 27, 749(1984).

    [54] P. Tolias. Analytical expressions for thermophysical properties of solid and liquid tungsten relevant for fusion applications. Nucl. Mater. Energy, 13, 42-57(2017).

    [55] A. E. Vlastós. Restrike mechanisms of exploding wire discharges. J. Appl. Phys., 39, 3081-3087(1968).

    [56] S. A. Pikuz, V. M. Romanova, S. I. Tkachenko et al. Overvoltage pulse development upon electrical explosion of thin wires. J. Phys. D: Appl. Phys., 40, 1742-1750(2007).

    [57] S. E. Rosenthal, G. S. Sarkisov, K. W. Struve et al. Joule energy deposition in exploding wire experiments. AIP Conf. Proc., 651, 213(2002).

    [58] R. Han, J. Wu, H. Zhou et al. Effects of water states on the process of underwater electrical wire explosion under microsecond timescale pulsed discharge. Eur. Phys. J. Plus, 135, 50(2020).

    [59] S. Efimov, V. Gurovich, A. Rososhek et al. Evolution of a shock wave generated by underwater electrical explosion of a single wire. Phys. Plasmas, 26, 042302(2019).

    [60] Y. F. Huang, L. C. Zhang, X. L. Zhu et al. Development of a simple model for predicting the spark-induced bubble behavior under different ambient pressures. J. Appl. Phys., 120, 043302(2016).

    [61] G. Bazalitski, S. Efimov, V. T. Gurovich et al. Addressing the efficiency of the energy transfer to the water flow by underwater electrical wire explosion. J. Appl. Phys., 106, 073308(2009).

    [62] S. Liu, Y. Liu, Y. Ren et al. Comparison and analysis of shockwave characteristics between underwater pulsed discharge and metal wire explosion. Phys. Plasmas, 27, 033503(2020).

    [63] W. Ding, R. Han, Q. Liu et al. Fracturing effect of electrohydraulic shock waves generated by plasma-ignited energetic materials explosion. IEEE Trans. Plasma Sci., 45, 423-431(2017).

    [64] R. Han, Q. Liu, H. Zhou et al. Generation of electrohydraulic shock waves by plasma-ignited energetic materials: II. Influence of wire configuration and stored energy. IEEE Trans. Plasma Sci., 43, 4009-4016(2015).

    [65] S. Efimov, Y. E. Krasik, D. Sheftman et al. Underwater electrical explosion of wires and wire arrays and generation of converging shock waves. IEEE Trans. Plasma Sci., 44, 412-431(2016).

    [66] L. X. Li, Z. G. Liu, D. Qian et al. Enhancement of shock wave generated by underwater electrical wire-array explosion at a fixed energy and mass of wire-array. IEEE Trans. Plasma Sci..

    [67] Y. Qin, A. Qiu, Y. Zhang. Principle and engineering practices on coal reservoir permeability improved with electric pulse controllable shock waves. Coal Sci. Technol., 45, 79-85(2017).

    [68] Z. Meng, Y. Qin, Y. Zhang et al. Innovative engineering practice of soft coal seam permeability enhancement by controllable shock wave for mine gas extraction: A case of Zhongjing mine, Shuicheng, Guizhou Province, China. J. China Coal Society, 44, 2388-2400(2019).

    [69] X. Wang(242018).

    Ruoyu Han, Jiawei Wu, Haibin Zhou, Yongmin Zhang, Aici Qiu, Jiaqi Yan, Weidong Ding, Chen Li, Chenyang Zhang, Jiting Ouyang. Experiments on the characteristics of underwater electrical wire explosions for reservoir stimulation[J]. Matter and Radiation at Extremes, 2020, 5(4): 047201
    Download Citation